Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38058211

RESUMO

MOTIVATION: Pediatric kidney disease is a widespread, progressive condition that severely impacts growth and development of children. Chronic kidney disease is often more insidious in children than in adults, usually requiring a renal biopsy for diagnosis. Biopsy evaluation requires copious examination by trained pathologists, which can be tedious and prone to human error. In this study, we propose an artificial intelligence (AI) method to assist pathologists in accurate segmentation and classification of pediatric kidney structures, named as AI-based Pediatric Kidney Diagnosis (APKD). RESULTS: We collected 2935 pediatric patients diagnosed with kidney disease for the development of APKD. The dataset comprised 93 932 histological structures annotated manually by three skilled nephropathologists. APKD scored an average accuracy of 94% for each kidney structure category, including 99% in the glomerulus. We found strong correlation between the model and manual detection in detected glomeruli (Spearman correlation coefficient r = 0.98, P < .001; intraclass correlation coefficient ICC = 0.98, 95% CI = 0.96-0.98). Compared to manual detection, APKD was approximately 5.5 times faster in segmenting glomeruli. Finally, we show how the pathological features extracted by APKD can identify focal abnormalities of the glomerular capillary wall to aid in the early diagnosis of pediatric kidney disease. AVAILABILITY AND IMPLEMENTATION: https://github.com/ChunyueFeng/Kidney-DataSet.


Assuntos
Inteligência Artificial , Insuficiência Renal Crônica , Adulto , Humanos , Criança , Rim/diagnóstico por imagem , Rim/patologia , Insuficiência Renal Crônica/patologia
2.
Sci Rep ; 13(1): 6384, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076590

RESUMO

The novel targeted therapeutics for hepatitis C virus (HCV) in last decade solved most of the clinical needs for this disease. However, despite antiviral therapies resulting in sustained virologic response (SVR), a challenge remains where the stage of liver fibrosis in some patients remains unchanged or even worsens, with a higher risk of cirrhosis, known as the irreversible group. In this study, we provided novel tissue level collagen structural insight into early prediction of irreversible cases via image based computational analysis with a paired data cohort (of pre- and post-SVR) following direct-acting-antiviral (DAA)-based treatment. Two Photon Excitation and Second Harmonic Generation microscopy was used to image paired biopsies from 57 HCV patients and a fully automated digital collagen profiling platform was developed. In total, 41 digital image-based features were profiled where four key features were discovered to be strongly associated with fibrosis reversibility. The data was validated for prognostic value by prototyping predictive models based on two selected features: Collagen Area Ratio and Collagen Fiber Straightness. We concluded that collagen aggregation pattern and collagen thickness are strong indicators of liver fibrosis reversibility. These findings provide the potential implications of collagen structural features from DAA-based treatment and paves the way for a more comprehensive early prediction of reversibility using pre-SVR biopsy samples to enhance timely medical interventions and therapeutic strategies. Our findings on DAA-based treatment further contribute to the understanding of underline governing mechanism and knowledge base of structural morphology in which the future non-invasive prediction solution can be built upon.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepacivirus/fisiologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Colágeno/uso terapêutico
4.
Nat Mater ; 22(5): 644-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36581770

RESUMO

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Assuntos
Actinas , Neoplasias , DNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , Transdução de Sinais
5.
Patterns (N Y) ; 3(12): 100642, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36569545

RESUMO

Pathologists diagnose prostate cancer by core needle biopsy. In low-grade and low-volume cases, they look for a few malignant glands out of hundreds within a core. They may miss a few malignant glands, resulting in repeat biopsies or missed therapeutic opportunities. This study developed a multi-resolution deep-learning pipeline to assist pathologists in detecting malignant glands in core needle biopsies of low-grade and low-volume cases. Analyzing a gland at multiple resolutions, our model exploited morphology and neighborhood information, which were crucial in prostate gland classification. We developed and tested our pipeline on the slides of a local cohort of 99 patients in Singapore. Besides, we made the images publicly available, becoming the first digital histopathology dataset of patients of Asian ancestry with prostatic carcinoma. Our multi-resolution classification model achieved an area under the receiver operating characteristic curve (AUROC) value of 0.992 (95% confidence interval [CI]: 0.985-0.997) in the external validation study, showing the generalizability of our multi-resolution approach.

6.
Bioinformatics ; 38(18): 4395-4402, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35881697

RESUMO

MOTIVATION: DNA fibre assay has a potential application in genomic medicine, cancer and stem cell research at the single-molecule level. A major challenge for the clinical and research implementation of DNA fibre assays is the slow speed in which manual analysis takes place as it limits the clinical actionability. While automatic detection of DNA fibres speeds up this process considerably, current publicly available software have limited features in terms of their user interface for manual correction of results, which in turn limit their accuracy and ability to account for atypical structures that may be important in diagnosis or investigative studies. We recognize that core improvements can be made to the GUI to allow for direct interaction with automatic results to preserve accuracy as well as enhance the versatility of automatic DNA fibre detection for use in variety of situations. RESULTS: To address the unmet needs of diverse DNA fibre analysis investigations, we propose DNA Stranding, an open-source software that is able to perform accurate fibre length quantification (13.22% mean relative error) and fibre pattern recognition (R > 0.93) with up to six fibre patterns supported. With the graphical interface, we developed, user can conduct semi-automatic analyses which benefits from the advantages of both automatic and manual processes to improve workflow efficiency without compromising accuracy. AVAILABILITY AND IMPLEMENTATION: The software package is available at https://github.com/lgole/DNAStranding. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
DNA , Software , Fluxo de Trabalho , Replicação do DNA
7.
Nat Commun ; 13(1): 2796, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589753

RESUMO

One common cause of vision loss after retinal detachment surgery is the formation of proliferative and contractile fibrocellular membranes. This aberrant wound healing process is mediated by epithelial-mesenchymal transition (EMT) and hyper-proliferation of retinal pigment epithelial (RPE) cells. Current treatment relies primarily on surgical removal of these membranes. Here, we demonstrate that a bio-functional polymer by itself is able to prevent retinal scarring in an experimental rabbit model of proliferative vitreoretinopathy. This is mediated primarily via clathrin-dependent internalisation of polymeric micelles, downstream suppression of canonical EMT transcription factors, reduction of RPE cell hyper-proliferation and migration. Nuclear factor erythroid 2-related factor 2 signalling pathway was identified in a genome-wide transcriptomic profiling as a key sensor and effector. This study highlights the potential of using synthetic bio-functional polymer to modulate RPE cellular behaviour and offers a potential therapy for retinal scarring prevention.


Assuntos
Fator 2 Relacionado a NF-E2 , Epitélio Pigmentado da Retina , Animais , Linhagem Celular , Movimento Celular , Cicatriz/metabolismo , Transição Epitelial-Mesenquimal , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Polímeros/metabolismo , Coelhos , Epitélio Pigmentado da Retina/metabolismo
8.
Sci Adv ; 8(9): eabj4641, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245124

RESUMO

Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6Chi monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis. TpMos were less susceptible to apoptosis and served as the main source of macrophage replenishment when MatMos were vulnerable toward bacteria-induced cellular death. Furthermore, TpMo and its derived macrophages contributed to host defense by balancing the proinflammatory cytokine response of MatMos. Consequently, adoptive transfer of TpMos improved the survival outcome of lethal sepsis. Our findings hence highlight a protective role for TpMos during bacterial infections and their contribution toward monocyte-derived macrophage heterogeneity in distinct disease outcomes.


Assuntos
Infecções Bacterianas , Sepse , Animais , Citocinas , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos
9.
Nat Commun ; 12(1): 3541, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112790

RESUMO

Technical advancements significantly improve earlier diagnosis of cervical cancer, but accurate diagnosis is still difficult due to various factors. We develop an artificial intelligence assistive diagnostic solution, AIATBS, to improve cervical liquid-based thin-layer cell smear diagnosis according to clinical TBS criteria. We train AIATBS with >81,000 retrospective samples. It integrates YOLOv3 for target detection, Xception and Patch-based models to boost target classification, and U-net for nucleus segmentation. We integrate XGBoost and a logical decision tree with these models to optimize the parameters given by the learning process, and we develop a complete cervical liquid-based cytology smear TBS diagnostic system which also includes a quality control solution. We validate the optimized system with >34,000 multicenter prospective samples and achieve better sensitivity compared to senior cytologists, yet retain high specificity while achieving a speed of <180s/slide. Our system is adaptive to sample preparation using different standards, staining protocols and scanners.


Assuntos
Inteligência Artificial , Manejo de Espécimes/métodos , Neoplasias do Colo do Útero/diagnóstico , Esfregaço Vaginal/métodos , Simulação por Computador , Aprendizado Profundo , Detecção Precoce de Câncer , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/fisiopatologia
10.
Stem Cell Reports ; 16(2): 237-251, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33450191

RESUMO

Recent trials of retinal pigment epithelium (RPE) transplantation for the treatment of disorders such as age-related macular degeneration have been promising. However, limitations of existing strategies include the uncertain survival of RPE cells delivered by cell suspension and the inherent risk of uncontrolled cell proliferation in the vitreous cavity. Human RPE stem cell-derived RPE (hRPESC-RPE) transplantation can rescue vision in a rat model of retinal dystrophy and survive in the rabbit retina for at least 1 month. The present study placed hRPESC-RPE monolayers under the macula of a non-human primate model for 3 months. The transplant was able to recover in vivo and maintained healthy photoreceptors. Importantly, there was no evidence that subretinally transplanted monolayers underwent an epithelial-mesenchymal transition. Neither gliosis in adjacent retina nor epiretinal membranes were observed. These findings suggest that hRPESC-RPE monolayers are safe and may be a useful source for RPE cell replacement therapy.


Assuntos
Xenoenxertos/transplante , Degeneração Macular/terapia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco/métodos , Idoso , Idoso de 80 Anos ou mais , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Feminino , Xenoenxertos/patologia , Humanos , Terapia de Imunossupressão , Macaca fascicularis , Masculino , Células Fotorreceptoras/fisiologia , Primatas , Retina/patologia , Retina/transplante , Epitélio Pigmentado da Retina/patologia
11.
BMC Bioinformatics ; 21(1): 558, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276732

RESUMO

BACKGROUND: High resolution 2D whole slide imaging provides rich information about the tissue structure. This information can be a lot richer if these 2D images can be stacked into a 3D tissue volume. A 3D analysis, however, requires accurate reconstruction of the tissue volume from the 2D image stack. This task is not trivial due to the distortions such as tissue tearing, folding and missing at each slide. Performing registration for the whole tissue slices may be adversely affected by distorted tissue regions. Consequently, regional registration is found to be more effective. In this paper, we propose a new approach to an accurate and robust registration of regions of interest for whole slide images. We introduce the idea of multi-scale attention for registration. RESULTS: Using mean similarity index as the metric, the proposed algorithm (mean ± SD [Formula: see text]) followed by a fine registration algorithm ([Formula: see text]) outperformed the state-of-the-art linear whole tissue registration algorithm ([Formula: see text]) and the regional version of this algorithm ([Formula: see text]). The proposed algorithm also outperforms the state-of-the-art nonlinear registration algorithm (original: [Formula: see text], regional: [Formula: see text]) for whole slide images and a recently proposed patch-based registration algorithm (patch size 256: [Formula: see text] , patch size 512: [Formula: see text]) for medical images. CONCLUSION: Using multi-scale attention mechanism leads to a more robust and accurate solution to the problem of regional registration of whole slide images corrupted in some parts by major histological artifacts in the imaged tissue.


Assuntos
Algoritmos , Artefatos , Vasos Sanguíneos/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Vasos Sanguíneos/diagnóstico por imagem , Carcinoma de Células Renais/irrigação sanguínea , Humanos , Imuno-Histoquímica/métodos , Microscopia
12.
J Clin Invest ; 130(11): 5817-5832, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32750042

RESUMO

Although IKK-ß has previously been shown as a negative regulator of IL-1ß secretion in mice, this role has not been proven in humans. Genetic studies of NF-κB signaling in humans with inherited diseases of the immune system have not demonstrated the relevance of the NF-κB pathway in suppressing IL-1ß expression. Here, we report an infant with a clinical pathology comprising neutrophil-mediated autoinflammation and recurrent bacterial infections. Whole-exome sequencing revealed a de novo heterozygous missense mutation of NFKBIA, resulting in a L34P IκBα variant that severely repressed NF-κB activation and downstream cytokine production. Paradoxically, IL-1ß secretion was elevated in the patient's stimulated leukocytes, in her induced pluripotent stem cell-derived macrophages, and in murine bone marrow-derived macrophages containing the L34P mutation. The patient's hypersecretion of IL-1ß correlated with activated neutrophilia and liver fibrosis with neutrophil accumulation. Hematopoietic stem cell transplantation reversed neutrophilia, restored a resting state in neutrophils, and normalized IL-1ß release from stimulated leukocytes. Additional therapeutic blockade of IL-1 ameliorated liver damage, while decreasing neutrophil activation and associated IL-1ß secretion. Our studies reveal a previously unrecognized role of human IκBα as an essential regulator of canonical NF-κB signaling in the prevention of neutrophil-dependent autoinflammatory diseases. These findings also highlight the therapeutic potential of IL-1 inhibitors in treating complications arising from systemic NF-κB inhibition.


Assuntos
Genes Dominantes , Transplante de Células-Tronco Hematopoéticas , Interleucina-1beta , Hepatopatias , Mutação , Inibidor de NF-kappaB alfa , Imunodeficiência Combinada Severa , Aloenxertos , Animais , Feminino , Células HEK293 , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Hepatopatias/genética , Hepatopatias/imunologia , Hepatopatias/terapia , Masculino , Camundongos , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/imunologia , Neutropenia/genética , Neutropenia/imunologia , Neutropenia/terapia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/terapia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
13.
Breast Cancer Res ; 22(1): 42, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375854

RESUMO

BACKGROUND: Stromal and collagen biology has a significant impact on tumorigenesis and metastasis. Collagen is a major structural extracellular matrix component in breast cancer, but its role in cancer progression is the subject of historical debate. Collagen may represent a protective layer that prevents cancer cell migration, while increased stromal collagen has been demonstrated to facilitate breast cancer metastasis. METHODS: Stromal remodeling is characterized by collagen fiber restructuring and realignment in stromal and tumoral areas. The patients in our study were diagnosed with triple-negative breast cancer in Singapore General Hospital from 2003 to 2015. We designed novel image processing and quantification pipelines to profile collagen structures using numerical imaging parameters. Our solution differentiated the collagen into two distinct modes: aggregated thick collagen (ATC) and dispersed thin collagen (DTC). RESULTS: Extracted parameters were significantly associated with bigger tumor size and DCIS association. Of numerical parameters, ATC collagen fiber density (CFD) and DTC collagen fiber length (CFL) were of significant prognostic value for disease-free survival and overall survival for the TNBC patient cohort. Using these two parameters, we built a predictive model to stratify the patients into four groups. CONCLUSIONS: Our study provides a novel insight for the quantitation of collagen in the tumor microenvironment and will help predict clinical outcomes for TNBC patients. The identified collagen parameters, ATC CFD and DTC CFL, represent a new direction for clinical prognosis and precision medicine. We also compared our result with benign samples and DICS samples to get novel insight about the TNBC heterogeneity. The improved understanding of collagen compartment of TNBC may provide insights into novel targets for better patient stratification and treatment.


Assuntos
Colágeno/ultraestrutura , Matriz Extracelular/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Colágeno/metabolismo , Intervalo Livre de Doença , Matriz Extracelular/metabolismo , Feminino , Humanos , Gradação de Tumores , Estadiamento de Neoplasias , Taxa de Sobrevida , Análise Serial de Tecidos/métodos
14.
Biomater Sci ; 7(11): 4603-4614, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436780

RESUMO

Anti-vascular endothelial growth factor (anti-VEGF) proteins are the gold-standard treatment for posterior eye segment proliferative vascular diseases such as Age-Related Macular Degeneration (AMD) and Diabetic Retinopathy (DR). However, the standard of care requires inconvenient monthly intravitreal injections. This underlies an unmet clinical need to develop alternative solutions for sustained delivery of biologics. In this paper, we demonstrated that anti-VEGFs can be encapsulated by a simple mild process into our polyurethane thermogel depots. By changing the hydrophilic-hydrophobic balance in the copolymer, anti-VEGF release rates can be modulated. The antibody in the thermogel partitions into protein domains which vary in size corresponding to the hydrophilicity balance of the polymer. Anti-VEGFs can be released in a relatively linear manner from the thermogel for up to 40 days in vitro. The encapsulated anti-VEGFs demonstrate anti-angiogenic bioactivity by inhibiting vessel outgrowth in rat ex vivo choroidal explants, and reducing vascular leakage in a VEGF-driven neovascularization rabbit model. In conclusion, we show that these thermogels can be tuned in terms of hydrophilicity and used for sustained delivery of bioactive anti-VEGFs. Physically cross-linked polyurethane thermoresponsive hydrogels could be a promising platform for sustained delivery of biologically active therapeutic proteins.


Assuntos
Inibidores da Angiogênese/farmacologia , Sistemas de Liberação de Medicamentos , Neovascularização Patológica/tratamento farmacológico , Poliuretanos/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ácido 2-Aminoadípico , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Animais , Humanos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/induzido quimicamente , Poliuretanos/administração & dosagem , Poliuretanos/química , Coelhos , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Sci Adv ; 4(9): eaar8483, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30214934

RESUMO

Certain malignant cancer cells form clusters in a chemoattractant gradient, which can spontaneously show three different phases of motion: translational, rotational, and random. Guided by our experiments on the motion of two-dimensional clusters in vitro, we developed an agent-based model in which the cells form a cohesive cluster due to attractive and alignment interactions. We find that when cells at the cluster rim are more motile, all three phases of motion coexist, in agreement with our observations. Using the model, we show that the transitions between different phases are driven by competition between an ordered rim and a disordered core accompanied by the creation and annihilation of topological defects in the velocity field. The model makes specific predictions, which we verify with our experimental data. Our results suggest that heterogeneous behavior of individuals, based on local environment, can lead to novel, experimentally observed phases of collective motion.


Assuntos
Movimento Celular , Leucemia Linfocítica Crônica de Células B/patologia , Modelos Biológicos , Linhagem Celular Tumoral , Quimiocina CCL19/metabolismo , Humanos
16.
Am J Clin Pathol ; 148(6): 502-512, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29165568

RESUMO

OBJECTIVES: Investigate subtle fibrosis similarities and differences in adult and pediatric nonalcoholic fatty liver disease (NAFLD) using second harmonic generation (SHG). METHODS: SHG/two-photon excitation fluorescence imaging quantified 100 collagen parameters and determined qFibrosis values by using the nonalcoholic steatohepatitis (NASH) Clinical Research Network (CRN) scoring system in 62 adult and 36 pediatric NAFLD liver specimens. RESULTS: Six distinct parameters identified differences among the NASH CRN stages with high accuracy (area under the curve, 0835-0.982 vs 0.885-0.981, adult and pediatric). All portal region parameters showed similar changes across early stages 0, 1C, and 2, in both groups. Parameter values decreased in adults with progression from stage 1A/B to 2 in the central vein region. In children, aggregated collagen parameters decreased, but nearly all distributed collagen parameters increased from stage 1A/B to 2. CONCLUSIONS: SHG analysis accurately reproduces NASH CRN staging in NAFLD, as well as reveals differences and similarities between adult and pediatric collagen deposition not captured by currently available quantitative methods.


Assuntos
Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Adolescente , Adulto , Fatores Etários , Biópsia/métodos , Criança , Progressão da Doença , Feminino , Fibrose , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores/métodos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Adulto Jovem
17.
Mol Biol Cell ; 28(25): 3582-3594, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978739

RESUMO

Organ and tissue formation are complex three-dimensional processes involving cell division, growth, migration, and rearrangement, all of which occur within physically constrained regions. However, analyzing such processes in three dimensions in vivo is challenging. Here, we focus on the process of cellularization in the anterior pole of the early Drosophila embryo to explore how cells compete for space under geometric constraints. Using microfluidics combined with fluorescence microscopy, we extract quantitative information on the three-dimensional epithelial cell morphology. We observed a cellular membrane rearrangement in which cells exchange neighbors along the apical-basal axis. Such apical-to-basal neighbor exchanges were observed more frequently in the anterior pole than in the embryo trunk. Furthermore, cells within the anterior pole skewed toward the trunk along their long axis relative to the embryo surface, with maximum skew on the ventral side. We constructed a vertex model for cells in a curved environment. We could reproduce the observed cellular skew in both wild-type embryos and embryos with distorted morphology. Further, such modeling showed that cell rearrangements were more likely in ellipsoidal, compared with cylindrical, geometry. Overall, we demonstrate that geometric constraints can influence three-dimensional cell morphology and packing within epithelial tissues.


Assuntos
Técnicas de Cultura de Células/métodos , Desenvolvimento Embrionário/fisiologia , Epitélio/fisiologia , Análise Espacial , Animais , Divisão Celular , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Simulação por Computador , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Modelos de Interação Espacial , Morfogênese/fisiologia , Organogênese/fisiologia
18.
Nat Commun ; 8: 14905, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374738

RESUMO

Understanding the mechanisms of collective cell migration is crucial for cancer metastasis, wound healing and many developmental processes. Imaging a migrating cluster in vivo is feasible, but the quantification of individual cell behaviours remains challenging. We have developed an image analysis toolkit, CCMToolKit, to quantify the Drosophila border cell system. In addition to chaotic motion, previous studies reported that the migrating cells are able to migrate in a highly coordinated pattern. We quantify the rotating and running migration modes in 3D while also observing a range of intermediate behaviours. Running mode is driven by cluster external protrusions. Rotating mode is associated with cluster internal cell extensions that could not be easily characterized. Although the cluster moves slower while rotating, individual cells retain their mobility and are in fact slightly more active than in running mode. We also show that individual cells may exchange positions during migration.


Assuntos
Movimento Celular/fisiologia , Rastreamento de Células/métodos , Ovário/citologia , Rotação , Animais , Drosophila , Feminino , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Microscopia Confocal , Oócitos
19.
Nat Mater ; 16(5): 587-596, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28135264

RESUMO

Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.


Assuntos
Endocitose , Epitélio/metabolismo , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Proteínas rab5 de Ligação ao GTP/metabolismo
20.
Cell Cycle ; 15(22): 3070-3081, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27657745

RESUMO

Cyclin A2 is an essential gene for development and in haematopoietic stem cells and therefore its functions in definitive erythropoiesis have not been investigated. We have ablated cyclin A2 in committed erythroid progenitors in vivo using erythropoietin receptor promoter-driven Cre, which revealed its critical role in regulating erythrocyte morphology and numbers. Erythroid-specific cyclin A2 knockout mice are viable but displayed increased mean erythrocyte volume and reduced erythrocyte counts, as well as increased frequency of erythrocytes containing Howell-Jolly bodies. Erythroblasts lacking cyclin A2 displayed defective enucleation, resulting in reduced production of enucleated erythrocytes and increased frequencies of erythrocytes containing nuclear remnants. Deletion of the Cdk inhibitor p27Kip1 but not Cdk2, ameliorated the erythroid defects resulting from deficiency of cyclin A2, confirming the critical role of cyclin A2/Cdk activity in erythroid development. Loss of cyclin A2 in bone marrow cells in semisolid culture prevented the formation of BFU-E but not CFU-E colonies, uncovering its essential role in BFU-E function. Our data unveils the critical functions of cyclin A2 in regulating mammalian erythropoiesis.


Assuntos
Forma Celular , Ciclina A2/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Animais , Células da Medula Óssea/metabolismo , Bromodesoxiuridina/metabolismo , Contagem de Células , Ciclo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Dano ao DNA , Células Eritroides/citologia , Células Eritroides/metabolismo , Eritropoese , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA