Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Biomed Sci ; 31(1): 70, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003473

RESUMO

Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.


Assuntos
Apoptose , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , COVID-19/virologia
2.
Plant Physiol Biochem ; 214: 108940, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39024781

RESUMO

Plant growth is severely harmed by cadmium (Cd) contamination, while the addition of zinc (Zn) can reduce the toxic effects of Cd. However, the interaction between Cd and Zn on the molecular mechanism and cell wall of Cosmosbipinnatus is unclear. In this study, a transcriptome was constructed using RNA-sequencing. In C. bipinnatus root transcriptome data, the expression of 996, 2765, and 3023 unigenes were significantly affected by Cd, Zn, and Cd + Zn treatments, respectively, indicating different expression patterns of some metal transporters among the Cd, Zn, and Cd + Zn treatments. With the addition of Zn, the damage to the cell wall was reduced, both the proportion and content of polysaccharides in the cell wall were changed, and Cd accumulation was decreased by 32.34%. In addition, we found that Cd and Zn mainly accumulated in pectins, the content of which increased by 30.79% and 61.4% compared to the CK treatment. Thus, Zn could alleviate the toxicity of Cd to C. bipinnatus. This study revealed the interaction between Cd and Zn at the physiological and molecular levels, broadening our understanding of the mechanisms of tolerance to Cd and Zn stress in cosmos.


Assuntos
Cádmio , Parede Celular , Zinco , Cádmio/toxicidade , Zinco/metabolismo , Zinco/toxicidade , Zinco/farmacologia , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
3.
iScience ; 27(4): 109389, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510110

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. The dysfunction of zinc homeostasis participates in the early and advancing malignancy of HCC. However, the prognostic ability of zinc homeostasis in HCC has not been clarified yet. Here, we showed a zinc-homeostasis related risk model in HCC. Five signature genes including ADAMTS5, PLOD2, PTDSS2, KLRB1, and UCK2 were screened out via survival analyses and regression algorithms to construct the nomogram with clinical characteristics. Experimental researches indicated that UCK2 participated in the progression of HCC. Patients with higher risk scores always had worse outcomes and were more associated with immune suppression according to the analyses of immune related-pathway activation, cell infiltration, and gene expression. Moreover, these patients were likely to exhibit more sensitivity to sorafenib and other antitumor drugs. This study highlights the significant prognostic role of zinc homeostasis and suggests potential treatment strategies in HCC.

4.
Cell Rep ; 43(2): 113749, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329876

RESUMO

Aberrant long interspersed element 1 (LINE-1 or L1) activity can cause insertional mutagenesis and chromosomal rearrangements and has been detected in several types of cancers. Here, we show that neddylation, a post-translational modification process, is essential for L1 transposition. The antineoplastic drug MLN4924 is an L1 inhibitor that suppresses NEDD8-activating enzyme activity. Neddylation inhibition by MLN4924 selectively impairs ORF2p-mediated L1 reverse transcription and blocks the generation of L1 cDNA. Consistent with these results, MLN4924 treatment suppresses the retrotransposition activity of the non-autonomous retrotransposons short interspersed nuclear element R/variable number of tandem repeat/Alu and Alu, which rely on the reverse transcription activity of L1 ORF2p. The E2 enzyme UBE2M in the neddylation pathway, rather than UBE2F, is required for L1 ORF2p and retrotransposition. Interference with the functions of certain neddylation-dependent Cullin-really interesting new gene E3 ligases disrupts L1 reverse transcription and transposition activity. Our findings provide insights into the regulation of L1 retrotransposition and the identification of therapeutic targets for L1 dysfunctions.


Assuntos
Ciclopentanos , Elementos Nucleotídeos Longos e Dispersos , Pirimidinas , Retroelementos , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Aberrações Cromossômicas , Proteínas Culina/genética , Enzimas de Conjugação de Ubiquitina
5.
Environ Pollut ; 345: 123503, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331243

RESUMO

Methyl jasmonate (MeJA), a crucial phytohormone, which plays an important role in resistance to Cadmium (Cd) stress. The cell wall (CW) of root system is the main location of Cd and plays a key role in resistance to Cd toxicity. However, the mechanism effect of MeJA on the CW composition and Cd accumulation remain unclear. In this study, the contribution of MeJA in regulating CW structure, pectin composition and Cd accumulation was investigated in Cosmos bipinnatus. Phenotypic results affirm MeJA's significant role in reducing Cd-induced toxicity in C. bipinnatus. Notably, MeJA exerts a dual impact, reducing Cd uptake in roots while increasing Cd accumulation in the CW, particularly bound to pectin. The molecular structure of pectin, mainly uronic acid (UA), correlates positively with Cd content, consistent in HC1 and cellulose, emphasizing UA as pivotal for Cd binding. Furthermore, MeJA modulates pectin methylesterase (PME) activity under Cd stress, influencing pectin's molecular structure and homogalacturonan (HG) content affecting Cd-binding capacity. Chelate-soluble pectin (CSP) within soluble pectins accumulates a substantial Cd proportion, with MeJA regulating both UA content and the minor component 3-deoxy-oct-2-ulosonic acid (Kdo) in CSP. The study delves into the intricate regulation of pectin monosaccharide composition under Cd stress, revealing insights into the CW's physical defense and Cd binding. In summary, this research provides novel insights into MeJA-specific mechanisms alleviating Cd toxicity in C. bipinnatus, shedding light on complex interactions between MeJA, and Cd accumulation in CW pectin polysaccharide.


Assuntos
Acetatos , Asteraceae , Cádmio , Ciclopentanos , Oxilipinas , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Pectinas/química , Parede Celular/metabolismo , Asteraceae/metabolismo
6.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289118

RESUMO

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Assuntos
Endopeptidases , Enterovirus Humano D , Interações entre Hospedeiro e Microrganismos , Vírus Oncolíticos , Piroptose , SARS-CoV-2 , Humanos , Linhagem Celular Tumoral , COVID-19/metabolismo , COVID-19/terapia , COVID-19/virologia , Endopeptidases/genética , Endopeptidases/metabolismo , Enterovirus Humano D/enzimologia , Enterovirus Humano D/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Gasderminas/antagonistas & inibidores , Gasderminas/genética , Gasderminas/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/enzimologia , Vírus Oncolíticos/genética , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
J Med Virol ; 95(1): e28310, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377393

RESUMO

Cellular infections by DNA viruses trigger innate immune responses mediated by DNA sensors. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway has been identified as a DNA-sensing pathway that activates interferons in response to viral infection and, thus, mediates host defense against viruses. Previous studies have identified oncogenes E7 and E1A of the DNA tumor viruses, human papillomavirus 18 (HPV18) and adenovirus, respectively, as inhibitors of the cGAS-STING pathway. However, the function of STING in infected cells and the mechanism by which HPV18 E7 antagonizes STING-induced Interferon beta production remain unknown. We report that HPV18 E7 selectively antagonizes STING-triggered nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation but not IRF3 activation. HPV18 E7 binds to STING in a region critical for NF-κB activation and blocks the nuclear accumulation of p65. Moreover, E7 inhibition of STING-triggered NF-κB activation is related to HPV pathogenicity but not E7-Rb binding. HPV18 E7, severe acute respiratory syndrome coronavirus-2 open reading frame 3a, human immunodeficiency virus-2 viral protein X, and Kaposi's sarcoma-associated herpesvirus KSHV viral interferon regulatory factor 1 selectively inhibited STING-triggered NF-κB or IRF3 activation, suggesting a convergent evolution among these viruses toward antagonizing host innate immunity. Collectively, selective suppression of the cGAS-STING pathway by viral proteins is likely to be a key pathogenic determinant, making it a promising target for treating oncogenic virus-induced tumor diseases.


Assuntos
COVID-19 , NF-kappa B , Humanos , NF-kappa B/metabolismo , Interferon beta/genética , Papillomavirus Humano 18/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Imunidade Inata , DNA , Vírus de DNA/genética , Vírus de DNA/metabolismo , Proteínas Oncogênicas
8.
J Med Virol ; 95(1): e28220, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36229923

RESUMO

Recognizing aberrant cytoplasmic double-stranded DNA and stimulating innate immunity is essential for the host's defense against viruses and tumors. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that synthesizes the second messenger 2'3'-cGAMP and subsequently activates stimulator of interferon genes (STING)-mediated activation of TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) and the production of type I interferon (IFN-I). Both the cGAS-STING-mediated IFN-I antiviral defense and the countermeasures developed by diverse viruses have been extensively studied. However, recent studies have revealed a convergent evolutionary feature of severe acute respiratory syndrome coronavirus 2 and human immunodeficiency virus (HIV) viral proteins in terms of the selective regulation of cGAS-STING-mediated nuclear factor-κB (NF-κB) signaling without any effect on cGAS-STING-mediated TBK1/IRF3 activation and IFN production. The potential beneficial effect of this cGAS-STING-mediated, NF-κB-dependent antiviral effect, and the possible detrimental effect of IFN-I in the pathogenesis of coronavirus disease 2019 and HIV infection deserve more attention and future investigation.


Assuntos
COVID-19 , Infecções por HIV , Infecções por Papillomavirus , Humanos , SARS-CoV-2/genética , NF-kappa B/metabolismo , Nucleotidiltransferases , Imunidade Inata , DNA/metabolismo , Antivirais
9.
Signal Transduct Target Ther ; 6(1): 123, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723219

RESUMO

The emergence of SARS-CoV-2 has resulted in the COVID-19 pandemic, leading to millions of infections and hundreds of thousands of human deaths. The efficient replication and population spread of SARS-CoV-2 indicates an effective evasion of human innate immune responses, although the viral proteins responsible for this immune evasion are not clear. In this study, we identified SARS-CoV-2 structural proteins, accessory proteins, and the main viral protease as potent inhibitors of host innate immune responses of distinct pathways. In particular, the main viral protease was a potent inhibitor of both the RLR and cGAS-STING pathways. Viral accessory protein ORF3a had the unique ability to inhibit STING, but not the RLR response. On the other hand, structural protein N was a unique RLR inhibitor. ORF3a bound STING in a unique fashion and blocked the nuclear accumulation of p65 to inhibit nuclear factor-κB signaling. 3CL of SARS-CoV-2 inhibited K63-ubiquitin modification of STING to disrupt the assembly of the STING functional complex and downstream signaling. Diverse vertebrate STINGs, including those from humans, mice, and chickens, could be inhibited by ORF3a and 3CL of SARS-CoV-2. The existence of more effective innate immune suppressors in pathogenic coronaviruses may allow them to replicate more efficiently in vivo. Since evasion of host innate immune responses is essential for the survival of all viruses, our study provides insights into the design of therapeutic agents against SARS-CoV-2.


Assuntos
Imunidade Inata , Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , RNA Viral/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Proteínas Virais/imunologia , Células A549 , Animais , Galinhas , Células HEK293 , Células HeLa , Humanos , Ligases/imunologia , Camundongos
10.
Oncol Lett ; 21(2): 121, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552242

RESUMO

Human endogenous retroviruses (HERVs) are the remnants of ancient retroviruses that infected human germline cells and became integrated into the human genome millions of years ago. Although most of these sequences are incomplete and silent, several potential pathological roles of HERVs have been observed in numerous diseases, such as multiple sclerosis and rheumatoid arthritis, and especially cancer, including breast cancer and pancreatic carcinoma. The present review investigates the expression signatures and complex regulatory mechanisms of HERVs in cancer. The long terminal repeats-driven transcriptional initiation of HERVs are regulated by transcription factors (such as Sp3) and epigenetic modifications (such as DNA methylation), and are influenced by environmental factors (such as ultraviolet radiation). In addition, this review focuses on the dual opposing effects of HERVs in cancer. HERVs can suppress cancer via immune activation; however, they can also promote cancer. HERV env gene serves a prime role in promoting carcinogenesis in certain malignant tumors, including breast cancer, pancreatic cancer, germ cell tumors, leukemia and Kaposi's sarcoma. Also, HERV ENV proteins can promote cancer via immune suppression. Targeting ENV proteins is a potential future antitumor treatment modality.

11.
Front Genet ; 11: 580299, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193702

RESUMO

Gastric cancer (GC) is the third most common cause of cancer-related death in the word. Immunotherapy is a promising treatment of cancer. However, it is unclear which GC subpopulation would benefit most from immunotherapy and it is necessary to develop effective biomarkers for predicting immunotherapy response. Nicotinamide N-methyltransferase (NNMT) is a metabolic regulator of cancer-associated fibroblast (CAF) differentiation and cancer progression. In this study, we explored the correlations of NNMT to tumor-infiltrating immune cells (TIICs) and immune marker sets in The Cancer Genome Atlas Stomach Adenocarcinoma STAD (TCGA-STAD). Subsequently, we screened the NNMT correlated genes and performed the enrichment analysis of these genes. We eventually predicted the 19 most potential small-molecule drugs using the connectivity map (CMap) and Comparative Toxicogenomics Database (CTD). Also, nadolol, tranexamic acid, felbinac and dapsone were considered the four most promising drugs for GC. In summary, NNMT can be used as a prognostic biomarker that reflect immune infiltration level and a novel therapeutic target in GC.

12.
Front Oncol ; 10: 576615, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194689

RESUMO

Background: Most colon adenocarcinoma (COAD) patients die of distant metastasis, though there are some therapies for metastatic COAD. However, the genes exclusively expressed in metastatic COAD remain unclear. This study aims to identify prognosis-related genes associated with distant metastasis and develop therapeutic strategies for COAD patients. Methods: Transcriptomic data from The Cancer Genome Atlas (TCGA; n = 514) cohort were analyzed as a discovery dataset. Next, the data from the GEPIA database and PROGgeneV2 database were used to validate our analysis. Key genes were identified based on the differential miRNA and mRNA expression with respect to M stage. The potential drugs targeting candidate differentially expressed genes (DEGs) were also investigated. Results: A total of 127 significantly DEGs in patients with distant metastasis compared with patients without distant metastasis were identified. Then, four prognosis-related genes (LEP, DLX2, CLSTN2, and REG3A) were selected based on clustering analysis and survival analysis. Finally, three compounds targeting the candidate DEGs, including ajmaline, TTNPB, and dydrogesterone, were predicted to be potential drugs for COAD. Conclusions: This study revealed that distant metastasis in COAD is associated with a specific group of genes, and three existing drugs may suppress the distant metastasis of COAD.

13.
Cancer Control ; 27(2): 1073274820932987, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32602366

RESUMO

Mastoscopic axillary lymph node dissection (MALND) is a currently used and safe surgical treatment option for breast cancer. However, the extensive application of MALND is still debatable because of the use of conventional axillary lymph node dissection (CALND). Therefore, in the current study, we aimed to compare the efficacy and safety of MALND and CALND for obtaining evidence-based conclusions about the short-term and long-term outcomes of MALND for patients with breast cancer. PubMed, Web of Science, Cochrane Library, and CNKI were comprehensively searched for articles published between January 1998 and January 2019. Then Newcastle-Ottawa scale was used for quality assessment. The Review Manager software version 5.0 was utilized for generating forest maps and funnel plots. Twelve studies including 2157 patients were selected for the meta-analysis. There were no significant differences in the number of lymph node dissections, tumor recurrence rate, axillary drainage, postoperative hospitalization time, and tumor size between the MALND and CALND groups (P > .05). In the MALND group, the surgery time was longer, while the incidence of intraoperative bleeding was lesser and the duration of drainage was shorter than those in the CALND group (P < .01). The complications in the MALND group were also fewer than those in the CALND group (P < .05). The results of the current study showed that MALND is reliable and feasible for breast cancer owing to the lesser incidence of intraoperative bleeding, shorter drainage duration, and lower incidence of complications compared to CALND.


Assuntos
Neoplasias da Mama/cirurgia , Endoscopia/métodos , Excisão de Linfonodo/métodos , Linfonodos/cirurgia , Recidiva Local de Neoplasia/cirurgia , Biópsia de Linfonodo Sentinela/métodos , Axila , Neoplasias da Mama/patologia , Feminino , Humanos , Linfonodos/patologia , Metástase Linfática , Recidiva Local de Neoplasia/patologia , Resultado do Tratamento
14.
J Cancer ; 11(7): 1727-1736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194784

RESUMO

Purpose: FKBP4 is a member of the immunophilin protein family, which plays a role in immunoregulation and basic cellular processes involving protein folding and trafficking associated with HSP90. However, the relationship between abnormal expression of FKBP4 and clinical outcome in luminal A subtype breast cancer (LABC) patients remains to be elucidated. Methods: Oncomine, bc-GenExMiner and HPA database were used for data mining and analyzing FKBP4 and its co-expressed genes. GEPIA database was used for screening co-expressed genes of FKBP4. Results: For the first time, we found that higher FKBP4 expression correlated with LABC patients and worse survival. Moreover, the upregulated co-expressed genes of FKBP4 were assessed to be significantly correlated with worse survival in LABC, and might be involved in the biological role of FKBP4. Conclusion: The expression status of FKBP4 is a significant prognostic indicator and a potential drug target for LABC.

15.
Biochem Biophys Res Commun ; 516(4): 1242-1247, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31301771

RESUMO

The human adenovirus oncoprotein E4orf6 hijacks intracellular Cullin 5-based E3 ubiquitin ligases (CRL5s) to induce the degradation of host proteins, including p53, that impede efficient viral replication. The complex also relies on another viral protein, E1B55K, to recruit substrates for ubiquitination. However, the determinants of adenoviral E4orf6-CRL5 E3 ligase-mediated p53 degradation in the scaffolding protein Cullin5 remain rarely investigated. Here, we demonstrated that the viral protein E4orf6 triggered relocalization of the Cullin5 protein from the cytoplasm to the nucleus and induced activation of the CRL5 E3 ligase via facilitating neddylation. The expression of the deneddylase SENP8/Den1 was significantly downregulated by E4orf6. We then identified SENP8 as a natural restriction factor for E4orf6-induced p53 degradation. Furthermore, our results indicated that the NEDD8-conjugating E2 enzyme UBE2M was essential for E4orf6-mediated p53 degradation and that its dominant negative mutant UBE2M C111S dramatically blocked E4orf6 functions. The Nedd8-activating enzyme inhibitor MLN4924 decreased E4orf6-induced neddylation of the cullin5 protein and subsequently suppressed p53 degradation. Collectively, our findings illuminate the strategy by which this viral oncoprotein specifically utilizes the neddylation pathway to activate host CRL E3 ligases to degrade host restriction factors. Disrupting this post-translational modification is an attractive pharmacological intervention against human adenoviruses.


Assuntos
Proteínas E4 de Adenovirus/metabolismo , Proteínas Culina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenoviridae/metabolismo , Ciclopentanos/farmacologia , Regulação para Baixo , Endopeptidases/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Pirimidinas/farmacologia , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo
16.
BMC Cancer ; 19(1): 503, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138162

RESUMO

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) play a critical role in tumor immune surveillance and immune suppression. Understanding tumor infiltrating T cell subset density, location and PD-1/PD-L1 expression might provide insight for the prediction of tumor therapeutic response and clinical outcome. The purpose of this study was to evaluate the expression and localization of CD8, FoxP3, PD-1, and PD-L1 in primary tumor tissues and their effects on prognosis of stage IV M0 locally advanced nasopharyngeal carcinoma (NPC) patients. METHODS: Sixty NPC patients with stage IV M0 locally advanced disease were treated with definitive chemoradiation. Tumor biopsies from primary lesion were analyzed for the expression and localization of CD8, FoxP3, PD-1, and PD-L1 by immunohistochemistry. Their associations with local disease control and survival of NPC were analyzed. RESULTS: The average follow-up time was 43 months (range from 14 to 61 months). High expression of CD8+, FoxP3+, PD-1+ and PD-L1+ was observed in 60, 86.7, 56.7, and 91.7% of patients, respectively. There was no correlation between clinicopathological features and the expression of these immune markers. High PD-1 expression was found to be associated with lower local disease control (5-year LRFS 23.2% vs 96.8%, p < 0.001) and unfavorable clinical outcome (5-year OS 47.4% vs 73.3%, p = 0.014). In multivariate analysis, PD-1 expression was also an adverse prognostic factor for 5-year OS (HR: 3.68, P = 0.023) and LRFS (HR: 16.89, 1.27-11.84, P = 0.007). Those with PD-1 distribution in both stroma and tumor region had the poorest prognosis. However, PD-1 expression has no significant correlation with 5-year RRFS (p = 0.980) and DMFS (p = 0.865). Patients with both PD-1 and PD-L1 high expression had significant poor local disease control (5-year LRFS 96.0% vs 43.0%, p < 0.001) and overall survival (5-year OS 80.8% vs 45.1%, p < 0.001) compared with the others. Other immune markers were not found having corrections with disease control and survival. CONCLUSIONS: PD-1 high expression, especially with PD-L1 co-expression, is associated with high local recurrence and unfavorable clinical outcome for stage IV M0 NPC patients, and might be a potential target for immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Receptor de Morte Celular Programada 1/metabolismo , Regulação para Cima , Adulto , Idoso , Antígenos CD8/metabolismo , Progressão da Doença , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida
17.
Biochem Biophys Res Commun ; 511(4): 910-915, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30851937

RESUMO

Interaction between HIV-1 Vif and host factor CBFß leads to the assembly of the Vif-Cul5-EloB/C ubiquitin ligase (E3 complex). By inducing the formation of E3 complex, Vif depletes host APOBEC3 restriction factors and promotes HIV-1 infection. In addition, Vif is known to arrest host cells at G2/M phase (G2 arrest), benefiting HIV-1 replication and contributing to the depletion of CD4+ T cells. However, whether CBFß is also involved in Vif-induced cell cycle arrest remains unclear. In the present study, we report that CBFß is an essential factor for Vif-induced G2 arrest. Reducing endogenous CBFß expression significantly compromised Vif's potency in cell cycle regulation. In addition, tests with CBFß and Vif mutants indicated that Vif-CBFß interaction is crucial for Vif to induce G2 arrest. Furthermore, suppressors against Vif-hijacked E3 complex or proteasome-mediated proteolysis also abolished Vif's ability to cause G2 arrest. In general, our data indicated that Vif induces G2 arrest through depletion of a yet-unknown cellular factor, where the involvement of CBFß is essential. On the other hand, our data also suggested that, antiviral drugs targeting the Vif-CBFß interaction have the potential to abolish Vif's ability to cause APOBEC3 degradation as well as G2 arrest in host cells, thus reducing both HIV-1 replication and Vif-induced CD4+ T-cell depletion.


Assuntos
Subunidade beta de Fator de Ligação ao Core/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Infecções por HIV/metabolismo , HIV-1/fisiologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Células HEK293 , Infecções por HIV/patologia , Interações Hospedeiro-Patógeno , Humanos , Mapas de Interação de Proteínas
18.
Mol Cancer ; 18(1): 53, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30925925

RESUMO

Exosomes are cell-derived vesicles of 30 to 150 nm that contain diverse proteins, nucleic acids, and lipids. These vesicles facilitate effective intercellular communication and trigger profound environmental changes. In recent years, many studies have identified diverse roles for exosomes in tumor metastasis, a major cause of cancer-related deaths; furthermore, circulating tumor-derived exosomes can drive the initiation and progression of metastasis and determine the specific target organs affected. Fortunately, our growing understanding of exosomes and relevant modification technology have provided new ideas for potential treatment of tumor metastases. Here we review recent advances concerning the role of exosomes in metastasis, focusing on their regulatory mechanisms and therapeutic targeting in advanced cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Exossomos/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Animais , Comunicação Celular , Humanos , Metástase Neoplásica , Neoplasias/patologia , Microambiente Tumoral
19.
Cancer Epidemiol ; 60: 67-76, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30925282

RESUMO

BACKGROUND: Differential microRNA (miRNA) expression profiles in plasma or serum were identified, providing foundation for studying their potentially diagnostic role in colorectal cancer (CRC). METHODS: We performed S-poly(T) Plus PCR assay to select and validate differentially expressed plasma miRNAs from a sample set including 101 CRC patients, 20 patients with colorectal noncancerous polyps (NCP), and 134 healthy controls. And bioinformatics methods was used to integrated predicted or validated targets of the differentially dysregulated miRNAs and analyzed their overrepresented pathways. RESULTS: After the two-phase selection and validation process, we identified a miRNA panel (miR-144-3p, miR-425-5p, and miR-1260b) with high diagnostic efficiency for CRC; the panel distinguished CRC patients from controls with 93.8% sensitivity and 91.3% specificity. Results indicated that the dysregulated miRNAs in CRC were functionally involved in several key cancer-related pathways, such as axonal guidance, PI3K, and calcium signaling pathways. CONCLUSIONS: Our study demonstrated that a plasma 3-miRNA panel may serve as a novel noninvasive biomarker to diagnose CRC. This plasma 3-miRNA panel may be related to CRC development. However, further studies are needed to highlight its theoretical strengths.


Assuntos
Neoplasias Colorretais/sangue , MicroRNAs/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Curva ROC , Adulto Jovem
20.
Int J Biochem Cell Biol ; 106: 107-116, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503931

RESUMO

Hepatocellular carcinoma (HCC) is the leading cause of cancer mortality worldwide. Early growth response factor 1 (Egr1) plays a crucial role in cancer progression. However, its precise role in HCC has not been clear. Here, we identified the aggravating role of Egr1 in cell proliferation of HCC firstly. The expression of Egr1 was significantly increased in HCC tissues. Functionally, overexpression of Egr1 enhanced, whereas silenced Egr1 expression attenuated HCC cells proliferation in vitro. Mechanistically, up-regulated Egr1 induced cell proliferation through activating Transforming growth factor (TGF)-ß1/Smad signaling pathway concomitantly with upregulation of p-Smad2 and p-Smad3. Secondly, miR-181a-5p was down-regulated in clinical HCC specimens and its expression was inversely correlated with Egr1 expression. Functionally, overexpression of miR-181a-5p inhibited, whereas decreased expression of miR-181a-5p promoted HCC cells proliferation in vitro. Furthermore, we demonstrated that miR-181a-5p overexpression directly suppressed Egr1, resulting in a down-regulated TGF-ß1/Smad pathway. Besides, the silenced Egr1 expression could rescue the enhanced cell proliferation induced by miR-181a-5p inhibitor. Thus, we concluded that miR-181a-5p is a negative regulator of Egr1 that can suppress tumor proliferation in HCC through targeting Egr1/TGF-ß1/Smad pathway, which may be a potential therapeutic approach of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Idoso , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Proteínas Smad/genética , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA