RESUMO
Cancer is a malignant tumor with the highest mortality of human diseases. The early diagnosis of cancer can greatly reduce its mortality. Ultracentrifugation is the most commonly employed technique to separate small extracellular vesicles (sEVs) due to their small size and rare abundance, but the low separation efficiency is a major concern. Herein, we proposed a DNAzyme-triggered assembly and disassembly system that converted single nano-sized sEVs into clusters that could be conveniently enriched by ordinary centrifugation and then be broken into single sEVs in the presence of magnesium ions. The simultaneous quantification of sEVs was realized by recording the increase in fluorescence upon nucleic acid cleavage, and a detection limit as low as 54 particles/µL was achieved. The whole analytical procedure could be completed in 1.5 h without the assistance of ultracentrifugation. Efficient enrichment and accurate quantification of sEVs are enabled through the proposed approach, broadening the potentials of sEVs in biological science, biomedical engineering, and personalized medicine.
Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , UltracentrifugaçãoRESUMO
In situ spatiotemporal microRNA (miRNA) imaging in mammal cells plays an essential role in illustrating its structures and biological functions. Herein, we proposed a near-infrared (NIR) light-activated nanoprobe for high-sensitive in situ controllable miRNA imaging in living cells. The NIR-activated nanoprobe employed an upconversion nanoparticle that acted as a NIR-to-UV transducer to trigger the following photocleavage toward a dumbbell DNA probe tethered on the surface of the nanoparticle. The structure change of the dumbbell probe then induced a catalytic hairpin assembly of target miRNAs, by which in situ readout of the amplified fluorescence signal was enabled. Additionally, both intracellular miRNA imaging and accurate quantification in live cells were realized without damaging the cell membranes. Compared with conventional in situ strategies, the proposed approach remarkedly increases imaging efficiency by eliminating those unfavored intercellular molecular imaging backgrounds. We assured that the proposed NIR-activated miRNA sensing strategy will add to the advancement for bioanalysis in living systems, which is of crucial importance in the diagnosis of various human diseases, especially cancers.