Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401788, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864814

RESUMO

Coated microneedles (CMNs) are a minimally invasive platform for immediate-release transdermal drug delivery. However, the practical applications of CMNs have been significantly hindered by the challenges associated with complex formulations, single function, and limited drug loading capacity. This study has developed a spiderweb-shaped iron-coordinated polymeric nanowire network (Fe-IDA NWs). The resulting Fe-IDA NWs are endowed with a certain viscosity due to the synergy of multiple supramolecular interactions. This allows them to replace traditional polymeric thickeners as microneedle coatings. The Fe-IDA NWs-coated microneedles (Fe-IDA MNs) display rapid disintegration in the skin model, which also enables the swift diffusion of Fe-IDA NWs and their payloads into the deeper skin layers. Additionally, Fe-IDA MNs exhibit desirable enzymatic activity and potential antibacterial ability. Thus, Fe-IDA MNs can enhance the therapeutic efficacy against wound infection through synergistic effects, and avoid the overly complicated formulation and the release of nontherapeutic molecules of conventional CMNs. As a proof-of-concept, Fe-IDA MNs loaded with chlorin e6 showed a synergistic chemodynamic-photodynamic antibacterial effect in a methicillin-resistant Staphylococcus aureus-infected wound model in mice. Collectively, this work has significant implications for the future of CMNs-based transdermal drug delivery systems and expands the application fields of metal coordination polymer (MCP) materials.

2.
Adv Sci (Weinh) ; 11(17): e2306602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38350733

RESUMO

Wounds infected with multidrug-resistant (MDR) bacteria are increasingly threatening public health and challenging clinical treatments because of intensive bacterial colonization, excessive inflammatory responses, and superabundant oxidative stress. To overcome this malignant burden and promote wound healing, a multifunctional cryogel (HA/TA2/KR2) composed of hyaluronic acid (HA), tannic acid (TA), and KR-12 peptides is designed. The cryogel exhibited excellent shape-memory properties, strong absorption performance, and hemostatic capacity. In vitro experiments demonstrated that KR-12 in the cryogel can be responsively released by stimulation with hyaluronidase produced by bacteria, reaching robust antibacterial activity against Escherichia coli (E. coli), MDR Pseudomonas aeruginosa (MDR-PA), and methicillin-resistant Staphylococcus aureus (MRSA) by disrupting bacterial cell membranes. Furthermore, the synergetic effect of KR-12 and TA can efficiently scavenge ROS and decrease expression of pro-inflammatory cytokines (tumor necrosis factor (TNF)-α & interleukin (IL)-6), as well as modulate the macrophage phenotype toward the M2 type. In vivo animal tests indicated that the cryogel can effectively destroy bacteria in the wound and promote healing process via accelerating angiogenesis and re-epithelialization. Proteomic analysis revealed the underlying mechanism by which the cryogel mainly reshaped the infected wound microenvironment by inhibiting the Nuclear factor kappa B (NF-κB) signaling pathway and activating the Janus kinase-Signal transducer and activator of transcription (JAK-STAT6) signaling pathway. Therefore, the HA/TA2/KR2 cryogel is a promising dressing candidate for MDR bacteria-infected wound healing.


Assuntos
Antibacterianos , Criogéis , Modelos Animais de Doenças , Hialuronoglucosaminidase , Espécies Reativas de Oxigênio , Cicatrização , Animais , Camundongos , Antibacterianos/farmacologia , Criogéis/farmacologia , Criogéis/química , Escherichia coli/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Hialuronoglucosaminidase/metabolismo , Inflamação/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Camundongos Endogâmicos BALB C
3.
Biomed J ; 47(1): 100605, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37179010

RESUMO

BACKGROUND: Curcumin ameliorates bone loss by inhibiting osteoclastogenesis. Curcumin inhibits RANKL-promoted autophagy in osteoclast precursors (OCPs), which mediates its anti-osteoclastogenic effect. But the role of RANKL signaling in curcumin-regulated OCP autophagy is unknown. This study aimed to explore the relationship between curcumin, RANKL signaling, and OCP autophagy during osteoclastogenesis. METHODS: We investigated the role of curcumin in RANKL-related molecular signaling in OCPs, and identified the significance of RANK-TRAF6 signaling in curcumin-treated osteoclastogenesis and OCP autophagy using flow sorting and lentiviral transduction. Tg-hRANKL mice were used to observe the in vivo effects of curcumin on RANKL-regulated bone loss, osteoclastogenesis, and OCP autophagy. The significance of JNK-BCL2-Beclin1 pathway in curcumin-regulated OCP autophagy with RANKL was explored via rescue assays and BCL2 phosphorylation detection. RESULTS: Curcumin inhibited RANKL-related molecular signaling in OCPs, and repressed osteoclast differentiation and autophagy in sorted RANK+ OCPs but did not affect those of RANK- OCPs. Curcumin-inhibited osteoclast differentiation and OCP autophagy were recovered by TRAF6 overexpression. But curcumin lost these effects under TRAF6 knockdown. Furthermore, curcumin prevented the decrease in bone mass and the increase in trabecular osteoclast formation and autophagy in RANK+ OCPs in Tg-hRANKL mice. Additionally, curcumin-inhibited OCP autophagy with RANKL was reversed by JNK activator anisomycin and TAT-Beclin1 overexpressing Beclin1. Curcumin inhibited BCL2 phosphorylation at Ser70 and enhanced protein interaction between BCL2 and Beclin1 in OCPs. CONCLUSIONS: Curcumin suppresses RANKL-promoted OCP autophagy by inhibiting signaling pathway downstream of RANKL, contributing to its anti-osteoclastogenic effect. Moreover, JNK-BCL2-Beclin1 pathway plays an important role in curcumin-regulated OCP autophagy.


Assuntos
Curcumina , Osteoclastos , Animais , Camundongos , Autofagia , Proteína Beclina-1/metabolismo , Diferenciação Celular , Curcumina/farmacologia , Curcumina/metabolismo , Osteogênese , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo
4.
Exp Biol Med (Maywood) ; 248(20): 1732-1744, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37750023

RESUMO

Triiodothyronine (T3) is critical to osteogenesis, which is the key factor in bone growth. Our transcriptomic and metabolomic analysis results indicated that T3 leads to enhanced expression of G protein-coupled estrogen receptor 1 (GPER1) as well as increases in glycolysis metabolite levels. Accordingly, our study aimed to explore the role of GPER1-mediated glycolysis in T3-regulated osteogenesis. The MC3T3-E1 cell line was used as an osteoblast precursor model. After treatment with T3, a GPER1-specific antagonist (G15) and inhibitor of glycolysis (3PO) were used to explore the roles of GPER1 and glycolysis in T3-regulated osteogenesis, as measured by ALP activity, Alizarin red staining intensity and osteogenic molecule expression. Our results showed that T3 promoted osteogenesis-related activity, which was reversed by treatment with G15. In addition, T3 enhanced the glycolytic potential and production of lactic acid (LD) in MC3T3-E1 cells, and treatment with G15 restored the aforementioned effects of T3. Ultimately, the pharmacological inhibition of glycolysis with 3PO blocked the ability of T3 to enhance osteogenic activities. In conclusion, GPER1 mediates glycolysis in osteoblast precursors, which is critical for T3-promoted osteogenesis.


Assuntos
Osteoblastos , Osteogênese , Diferenciação Celular , Linhagem Celular , Osteoblastos/metabolismo , Animais , Camundongos
5.
J Orthop Surg Res ; 18(1): 598, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574567

RESUMO

OBJECTIVE: Spinal schwannomas (SS) and spinal meningiomas (SM) account for most intradural extramedullary (IDEM) tumors. These tumors are usually benign lesions, which generally respond favorably to surgical excision. Few studies up to now tried to determine the long-term outcome after minimally invasive surgery (MIS) with multimodal intraoperative neurophysiological monitoring (IONM) for IDEM tumors. The aim of this study was to present one of the largest case series with special regard to IONM findings and long-term outcome after MIS-keyhole surgery with a tubular retractor system. METHODS: Between January 2013 and August 2018, 87 patients with IDEM tumors who underwent tumor removal surgery via MIS-keyhole approach under multimodal IONM were retrospectively reviewed. The neurological status was assessed using a modified McCormick grading scale pre- and postoperatively. Multimodal IONM consisted of motor evoked potentials (MEP), somatosensory evoked potentials (SEP), and electromyography (EMG). Both short-term and long-term clinical evaluations as well as patients' medical files were retrospectively analyzed. RESULTS: Surgeries were performed for resection of SS in 49 patients and SM in 38 patients. Tumor locations were cervical in 16.1%, thoracic in 48.3%, thoracolumbar in 4.6%, lumbar 31%. Critical IONM changes were detected in 9 operations (10.3%) in which there were 2 SEPs, 5 MEPs, and 2 EMG events. Three IONM changes (2 MEPs, 1 EMG) were turned out to be transient change in nature since they were resolved in a short time when immediate corrective actions were initiated. Six patients with permanent IONM changes (2SEPs, 3MEPs, 1EMG event), all deficits had resolved during hospitalization or on short -term follow-up evaluation. Sensitivity, specificity, and positive and negative predicted values of IONM were 100, 96, 67, and 100%, respectively. Gross total resection rate was 100%, and a stable or improved McCormick grade exhibited in all patients. No tumor recurrence and no spinal instability were found in the long-term follow-up evaluation (mean 5.2 ± 2.9 years postoperatively). Overall, 94% of patients were either satisfied or very satisfied with their operation, and 93% patients reported excellent or good general clinical outcome according to Odom's criteria. CONCLUSION: MIS-keyhole surgery with multimodal IONM for IDEM tumors enables a high level of satisfaction and a satisfying long-term clinical and surgical outcome.


Assuntos
Monitorização Neurofisiológica Intraoperatória , Neoplasias da Medula Espinal , Neoplasias da Coluna Vertebral , Humanos , Estudos Retrospectivos , Recidiva Local de Neoplasia , Neoplasias da Medula Espinal/cirurgia , Procedimentos Neurocirúrgicos , Neoplasias da Coluna Vertebral/cirurgia
6.
Burns Trauma ; 10: tkac019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910193

RESUMO

Background: Most traditional wound dressings only partially meet the needs of wound healing because of their single function. Patients usually suffer from the increasing cost of treatment and pain resulting from the frequent changing of wound dressings. Herein, we have developed a mutifunctional cryogel to promote bacterial infected wound healing based on a biocompatible polysaccharide. Methods: The multifunctional cryogel is made up of a compositive scaffold of chitosan (CS), gelatin (Gel) and tannic acid (TA) and in situ formed silver nanoparticles (Ag NPs). A liver bleeding rat model was used to evaluate the dynamic hemostasis performance of the various cryogels. In order to evaluate the antibacterial properties of the prepared cryogels, gram-positive bacterium Staphylococcus aureus (S. aureus) and gram-negative bacterium Escherichia coli (E. coli) were cultured with the cryogels for 12 h. Meanwhile, S. aureus was introduced to cause bacterial infection in vivo. After treatment for 2 days, the exudates from wound sites were dipped for bacterial colony culture. Subsequently, the anti-inflammatory effect of the various cryogels was evaluated by western blotting and enzyme-linked immunosorbent assay. Finally, full-thickness skin defect models on the back of SD rats were established to assess the wound healing performances of the cryogels. Results: Due to its porous structure, the multifunctional cryogel showed fast liver hemostasis. The introduced Ag NPs endowed the cryogel with an antibacterial efficiency of >99.9% against both S. aureus and E. coli. Benefited from the polyphenol groups of TA, the cryogel could inhibit nuclear factor-κB nuclear translocation and down-regulate inflammatory cytokines for an anti-inflammatory effect. Meanwhile, excessive reactive oxygen species could also be scavenged effectively. Despite the presence of Ag NPs, the cryogel did not show cytotoxicity and hemolysis. Moreover, in vivo experiments demonstrated that the biocompatible cryogel displayed effective bacterial disinfection and accelerated wound healing. Conclusions: The multifunctional cryogel, with fast hemostasis, antibacterial and anti-inflammation properties and the ability to promote cell proliferation could be widely applied as a wound dressing for bacterial infected wound healing.

7.
Int J Biol Macromol ; 215: 550-559, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35752336

RESUMO

A novel antibacterial strategy is urgently required to develop for solving bacterial biofilm obstruction and bacterial drug resistance in the infected wound healing process. Herein, the Chitosan/Bletilla striata polysaccharide composited microneedles were prepared by chitosan, tannic acid, AgNO3 and Bletilla striata polysaccharide through step centrifugation. In our design system, the porous structure of microneedles gradually disappeared, and the mechanical properties were significantly improved after multiple fillings. Ag+ is reduced in-situ to silver nanoparticles by the abundant polyphenols of tannic acid, displaying antibacterial effects both in vitro and vivo, even for methicillin resistant Staphylococcus aureus. The addition of Bletilla striata polysaccharide increased the ability of piercing biofilm and promoted wound healing. The microneedles exhibited good biocompatibility and with function of piercing the bacterial biofilms, scavenging excessive free radicals, inhibiting inflammatory factors, and promoting wound healing. Therefore, the multifunctional composited microneedles show great potential to promote infected and susceptible wound healing.


Assuntos
Quitosana , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Orchidaceae , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Nanopartículas Metálicas/química , Orchidaceae/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Prata/química , Taninos/farmacologia , Cicatrização
8.
Mol Med ; 28(1): 22, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183115

RESUMO

BACKGROUND: Phosphorylation modification of BCL2 is involved in receptor activator of nuclear factor-κB ligand (RANKL)-induced autophagy of osteoclast precursors (OCPs) and osteoclastogenesis. As an antiapoptotic molecule, the role of BCL2 phosphorylation in osteoclastogenesis is unknown. This study aimed to explore how BCL2 phosphorylation at specific sites regulates osteoclastogenesis. METHODS: We first examined the effects of RANKL on BCL2 phosphorylation at different sites (Ser70 and Ser87) in OCPs. In vivo, transgenic mice overexpressing RANKL (Tg-hRANKL mice) were used to observe the effects of RANKL on phosphorylated BCL2 at different sites in OCPs of trabecular bone. Subsequently, using site-directed mutagenesis, we observed the respective effect of BCL2 mutations at different phosphorylation sites in OCPs on osteoclastogenesis, apoptosis, autophagy and the affinity between BCL2 and Beclin1/BAX under RANKL intervention. RESULTS: RANKL promoted BCL2 phosphorylation at the Ser70 (S70) site, but not the Ser87 (S87) site, in OCPs. Moreover, Tg-hRANKL mice had stronger BCL2 phosphorylation capacity at S70, not S87, in the OCPs of trabecular bone than wild-type mice in the same nest. Furthermore, BCL2 mutation at S70, not S87, inhibited RANKL-induced osteoclast differentiation and bone resorption activity. In addition, BCL2 mutation at S70 promoted OCP apoptosis, while BCL2 mutation at S87 showed the opposite effect. Remarkably, the BCL2 mutation at S70, not S87, inhibited OCP autophagic activity. Furthermore, BCL2 mutation at S70 enhanced the coimmunoprecipitation of BCL2 and Beclin1, whereas BCL2 mutation at S87 enhanced the coimmunoprecipitation of BCL2 and BAX in OCPs. More importantly, OCP autophagy, osteoclast differentiation and resorption pits inhibited by BCL2 mutation at S70 could be reversed by Beclin1 upregulation with TAT-Beclin1. CONCLUSION: RANKL activates OCP autophagy through BCL2 phosphorylation at S70, thereby promoting osteoclastogenesis, which indicates that the inactivation of BCL2 at S70 in OCPs may be a therapeutic strategy for pathological bone loss.


Assuntos
Osteoclastos , Osteogênese , Proteínas Proto-Oncogênicas c-bcl-2 , Ligante RANK , Animais , Autofagia , Diferenciação Celular/fisiologia , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais
9.
J Mater Chem B ; 10(14): 2296-2315, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35060581

RESUMO

Medical devices and surgical implants are necessary for tissue engineering and regenerative medicines. However, the biofouling and microbial colonization on the implant surface continues to be a major concern, which is difficult to eradicate and typically necessitates either antibiotic therapy or implant removal. As a result, efficient and eco-friendly bioinspired coating strategies for tethering functional materials or molecules on different medical substrates are highly desirable, especially for endowing versatile surface functionalities. Tannic acid (TA), a well-known tea stain polyphenol, has a good affinity for various substrates and actively inhibits the adhesion and colonization of microbes. Thus, functionalization of polymers, nanomaterials, metal-phenolic networks (MPNs), and proteins using TA bestows the end-products with unique binding or anchoring abilities on various implantable surfaces. This review addresses the recent advancements in the essential biomedical perspective of TA-based bioinspired universal surface coating technologies by focusing on their intrinsic features and ability to produce engineered functional composites. Further, the possible contributions of TA-based composites in antifouling and antibacterial applications on various biomedical substrates are outlined.


Assuntos
Incrustação Biológica , Taninos , Antibacterianos/química , Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Polímeros/química , Propriedades de Superfície , Taninos/química , Taninos/farmacologia
10.
Biomaterials ; 273: 120823, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33930738

RESUMO

Bioorthogonal prodrug activation is fascinating but suffers from staggered administration of prodrug and trigger, which would not only reduce the therapeutic effect but bring great inconvenience for clinical application. Herein, we report a new cross-linked lipoic acid nanocapsules (cLANCs) based two-component bioorthogonal nanosystem for "one-stitch" prodrug activation. Due to the reversible stability of cLANCs, the loaded prodrug and trigger cannot release in advance while can react upon arrival in the tumor tissue. Moreover, the cLANCs would be degraded into dihydrolipoic acid in tumor cells to potentiate the anticancer effect of the drug synthesized in situ. The data showed that the new bioorthogonal system held a killing effect 1.63 times higher than that of parent drug 3 against human colorectal tumor cells (HT29) and a tumor inhibitory rate 34.2% higher than that of 3 against HT29 tumor xenograft model with negligible side effects. The biodistribution study showed that the "one-stitch" prodrug activation exhibited a selective accumulation of 3 in the tumor tissue compared with free 3 group (34.2 µg vs 3.56 µg of 3/g of tissue). This two-component bioorthogonal nanosystem based on cross-linked lipoic acid nanocapsules constitutes the first example of "one-stitch" bioorthogonal prodrug activation.


Assuntos
Nanocápsulas , Neoplasias , Pró-Fármacos , Ácido Tióctico , Humanos , Nanocápsulas/uso terapêutico , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Ácido Tióctico/uso terapêutico , Distribuição Tecidual
11.
J Hazard Mater ; 405: 124269, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33144009

RESUMO

Uptake of residual pesticides in a soil by a certain crop plant may be governed by their physicochemical properties. Uptake and translocation of pesticides (imidacloprid, acetamiprid, tricyclazole, azoxystrobin, tebuconazole and difenoconazole) with the octanol/water partition coefficient (log Kow) ranging from 0.57 to 4.36 were investigated in soil with maize as a model plant. The results show that all tested pesticides in soil were uptaken by maize with accumulation amount of 27.73, 17.75, 18.96, 12.56, 10.66 and 2.13 µg for imidacloprid, acetamiprid, tricyclazole, azoxystrobin, tebuconazole and difenoconazole at 14 d, respectively. The accumulation amount was negatively correlated with adsorption coefficients and positively correlated with pesticide concentration in in situ pore water (CIPW). Root bioconcentration factor varied widely from 0.61 for imidacloprid to 974.64 for difenoconazole was positively correlated with log Kow and molecular weight but negatively with water solubility. Conversely, translocation factor varied from 0 for difenoconazole to 1.64 for imidacloprid was negatively correlated with log Kow but positively with water solubility. It determined that uptake, accumulation and translocation of the pesticides in soil by maize are governed by their physicochemical properties, especially log Kow. CIPW is an appropriate candidate to evaluate the accumulation of pesticides in maize from soil.


Assuntos
Praguicidas , Poluentes do Solo , Transporte Biológico , Praguicidas/análise , Solo , Poluentes do Solo/análise , Zea mays
12.
Adv Healthc Mater ; 10(3): e2001430, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33274859

RESUMO

Herein, a new nanodrug of azobenzene-functionalized interfacial cross-linked reverse micelles (AICRM) with 5-fluorouracil loading (5-FU@AICRM) is reported. Upon irradiation with 530 nm light in water, the surface azobenzenes of the nanoparticles change from polar cis-conformation to nonpolar trans-conformation, resulting in the aggregation of 5-FU@AICRM within minutes. Simultaneously, the conformation change unlocks hydrophilic 5-FU with a strong water immigration propensity, allowing them to spray out from the AICRM quickly. This fast release ensures a thorough release of the drug, before the aggregates are internalized by adjacent cells, making it possible to achieve deep tissue penetration. A study of in vivo anticancer activity in A549 tumor-bearing nude mice shows that the tumor inhibition rate (TIR) of 5-FU@AICRM is up to ≈86.2%, 31.6% higher than that of group without green light irradiation and 20.7% higher than that of carmofur (CF, a hydrophobic analog of 5-FU)-loaded AICRM (CF@AICRM), in which CF is released slowly under light irradiation because of its hydrophobicity. Fast drug release upon nanodrug aggregation provides a good solution for balancing the contradiction of "aggregation and penetration" in tumor treatment with nanodrugs.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Fluoruracila , Camundongos , Camundongos Nus , Micelas
13.
Biosci Biotechnol Biochem ; 84(7): 1455-1459, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32154764

RESUMO

Puerarin inhibits osteoclastogenesis and cells migration. This study aims to explore whether puerarin prevents osteoclastogenesis by inhibiting osteoclast precursors (OCPs) migration. The results showed that puerarin reduced MCP-1 production in OCPs, while inhibiting OCPs migration based on MCP-1. Puerarin reversed MCP-1-promoted osteoclastogenesis. CCR2 overexpression didn't increase osteoclastogenesis with puerarin. Therefore, puerarin prevents OCPs migration by reducing MCP-1, whereby inhibiting osteoclastogenesis.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/antagonistas & inibidores , Isoflavonas/farmacologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Movimento Celular/genética , Células Cultivadas , Quimiocina CCL2/biossíntese , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/genética , Ligante RANK/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tíbia/citologia , Transdução Genética
14.
Langmuir ; 36(12): 3193-3200, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32148045

RESUMO

Organic fluorescent nanoparticles (FNPs) have become increasingly prevalent in a variety of applications but the creation of organic FNPs using a simple procedure and that possess diverse morphology, multicolor luminescence, and high brightness has been challenging. Herein, a facile strategy to prepare this class of organic FNPs is established by way of preformed organic nanoparticles themselves. It was found that as long as the nanoparticles contained aromatic/heterocyclic rings in their base unit and regardless of morphologies (e.g., small-molecule micelles, polymeric micelles, reverse micelles, solid microspheres, and vesicles), simple UV irradiation can result in the particles exhibiting excitation-wavelength-dependent photoluminescence with considerable quantum yields (∼8.3-16.7% for tested particles). Upon initial investigation of the mechanism, the photoluminescence behavior was attributed to a polycyclic aromatic hydrocarbon (PAH) process. Furthermore, the application of the synthesized organic FNPs in cancer cell imaging is demonstrated as just one of the many potential applications. The straightforward method to supply preformed organic nanoparticles with photoluminescence would be attractive for scientists in both academia and industry.

15.
J Mater Chem B ; 8(13): 2719-2725, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32149293

RESUMO

The cross-linked small-molecule micelles (cSMs) have found applications in many fields but their low loading capacity and non-fluorescence property hindered their further development. Herein, water-soluble organic nanoparticles were applied as templates to "stretch" the hydrophobic core of cSMs and photo-cross-linking was employed to supply photoluminescence. The resulting cross-linked small-molecule capsules (cSCs) not only reserve the superior properties of cSMs of accurate monomer, easy functionalization and robust stability, but also achieve high drug loading capacity and excitation wavelength-dependent fluorescence, where the drug loading contents (DLCs) for various hydrophobic drugs were more than 30-fold higher than that of cSMs, and the maximum quantum yield could be as high as 12.0%. Featuring these superiorities, the cSCs hold promising potential in many fields and an example of doxorubicin-loaded cSCs (DOX@cSCs) for multichannel imaging-guided drug delivery is shown in this work.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Reagentes de Ligações Cruzadas/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Medições Luminescentes , Imagem Óptica , Bibliotecas de Moléculas Pequenas/química , Antibióticos Antineoplásicos/química , Cápsulas/síntese química , Cápsulas/química , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/síntese química , Dimetilformamida/análise , Relação Dose-Resposta a Droga , Doxorrubicina/química , Desenho de Fármacos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Bibliotecas de Moléculas Pequenas/síntese química , Propriedades de Superfície
16.
Chemosphere ; 248: 126024, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32004891

RESUMO

Root uptake, translocation, and subcellular distribution of six pesticides (dinotefuran, thiamethoxam, imidacloprid, imazethapyr, propiconazole, and chlorpyrifos) with Kow ranging from -0.549 to 4.7 were investigated in wheat to study transportation and accumulation of pesticides. The root bioconcentration factor (RCF) of pesticides decreased with water solubility (R2 = 0.6121) and increased with hydrophobicity (when the pH-adjusted log Kow > 2, R2 = 0.925), respectively. The translocation of neutral pesticides from roots to shoots increased positively with water solubility (R2 > 0.6484) but decreased with hydrophobicity (R2 > 0.8039). The subcellular fraction concentration factor (SFCF) increased linearly with hydrophobicity of the tested pesticides (R2 > 0.958). The log RCF was positively correlated with log SFCF in root cell walls (R2 = 0.9894) and organelles (R2 = 0.9786). Transportation of the pesticides from roots to stems and stems to leaves was adversely affected by the log SFCF of cell walls and organelles of roots (R2 > 0.7997) and stems (R2 > 0.6666), respectively. Hydrophobicity-dependent SFCF is a factor governing accumulation of pesticides in roots after uptake and their subsequent upward translocation.


Assuntos
Praguicidas/farmacocinética , Triticum/efeitos dos fármacos , Triticum/metabolismo , Transporte Biológico , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Praguicidas/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Solubilidade , Triticum/citologia , Triticum/crescimento & desenvolvimento
17.
Mol Cell Endocrinol ; 500: 110637, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678610

RESUMO

BACKGROUND/PURPOSE: It remains unclear what role curcumin plays in the autophagy of osteoclast precursors (OCPs) during osteoclastogenesis, since some researchers found that curcumin has the ability to inhibit osteoclastogenesis. While others have considered it as an autophagy activator. This study aimed to determine the effect of curcumin-regulated autophagy on osteoclastogenesis. RESULTS: The results revealed that direct administration of curcumin enhanced the OCP autophagy response in bone marrow-derived macrophages (BMMs). Curcumin could also abate RANKL's stimulatory effect on OCP autophagy and osteoclastogenesis. Autophagic suppression related to pharmacological inhibitors or gene silencing could further enhance the inhibitory effect of curcumin on osteoclastogenesis. As expected, curcumin ameliorated ovariectomy (OVX)-induced bone loss and its effect could be promoted by an autophagy inhibitor (chloroquine). CONCLUSIONS: In conclusion, curcumin can directly enhance the autophagic activity of OCPs, which inhibits its anti-osteoclastogeneic effects. Autophagy inhibition-based drugs are expected to enhance curcumin's efficacy in treating osteoporosis.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Curcumina/farmacologia , Macrófagos/citologia , Osteogênese/efeitos dos fármacos , Ovariectomia/efeitos adversos , Animais , Autofagia , Reabsorção Óssea/etiologia , Células Cultivadas , Cloroquina/farmacologia , Modelos Animais de Doenças , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Ligante RANK/farmacologia
18.
J Mater Chem B ; 7(47): 7540-7547, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31720682

RESUMO

Liposomes have been applied extensively as nanocarriers in the clinic (e.g., to deliver anticancer drugs) due to their biocompatibility and internal cavity structures. However, their low drug-loading capacity (DLC; <10%) and uncontrolled release reduce their efficacy in cancer treatment. To improve the DLC and monitor release of drugs in cells in real-time, stimuli-responsive vesicles must be developed. We present various amphiphilic tetraphenylethylene (TPE)-containing compounds designed to self-assemble into liposome-like vesicles that can load both hydrophilic and hydrophobic drugs. The highest DLC for doxorubicin (DOX) was ≤26% for vesicles (diameter = 105 nm) that could encapsulate hydrophilic DOX in the interior water pool and hydrophobic DOX viaπ-π stacking interactions between DOX and the TPE moiety. The stable vesicles could respond rapidly to overexpressed glutathione in the tumor microenvironment to release loaded DOX for cancer therapy. Vesicles modified by active targeting groups showed more efficacious tumor treatment compared with unmodified vesicles and free DOX in vitro and in vivo. Simultaneously we observed, spatiotemporally, the subcellular location of the delivery system and release process of DOX. Our work provides a novel nano-engineering technology to integrate the desired properties for anticancer theranostics: high DLC, stability, stimuli-responsiveness to the cancer environment, drug-delivery monitoring, active targeting, and suppression of tumor growth. These novel vesicles could be employed as multifunctional drug-delivery systems for cancer therapy.


Assuntos
Doxorrubicina/química , Lipossomos/química , Estilbenos/química , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Meia-Vida , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Oxirredução , Tamanho da Partícula
19.
ACS Appl Mater Interfaces ; 11(49): 46112-46123, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31722522

RESUMO

We report a chemo/starvation/chemodynamic trimodal combination therapy to combat multidrug-resistant (MDR) tumors by developing a ferrocene-containing nanovesicle (FcNV), which encapsulates glucose oxidase (GOx) in the hydrophilic core and coordinates cisplatin (Pt) in the hydrophobic layer (GOx&Pt@FcNV). Contrasting with other reported multimodal combination therapies, the new nanodrug (GOx&Pt@FcNV) relies on cascade reactions to drastically increase the overall effectiveness against MDR tumors. Specifically, Pt blocks deoxyribonucleic acid replication and activates hydrogen peroxide (H2O2) generation for chemotherapy; GOx consumes glucose to produce H2O2 and gluconic acid for starvation therapy; and all H2O2 products are catalyzed by ferrous ions decomposed from ferrocene to generate the highly toxic hydroxyl radicals (•OH) for chemodynamic therapy. The in vitro studies reveal that GOx&Pt@FcNV exhibits a highly efficient killing effect against various MDR tumor cells. The in vivo studies of double-tumor-bearing nude mice demonstrate that the tumor inhibitory rates (TIRs) of GOx&Pt@FcNV against cisplatin-resistant A549/DDP are 8.1 times and 3.3 times higher than those of Pt and Pt@FcNV, respectively; they are also 8.6 times and 4.3 times higher than Pt and Pt@FcNV against adriamycin-resistant MCF-7/ADR, respectively. This nanodrug with endogenous stimuli-activated cascade reactions offers a reference for the design of effective trimodal combination therapies to combat MDR tumors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glucose Oxidase/química , Radical Hidroxila/química , Neoplasias/tratamento farmacológico , Animais , Técnicas Biossensoriais , Cisplatino/química , Cisplatino/farmacologia , Terapia Combinada , Replicação do DNA/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Compostos Ferrosos/química , Glucose/metabolismo , Glucose Oxidase/farmacologia , Humanos , Peróxido de Hidrogênio/química , Ferro/metabolismo , Células MCF-7 , Metalocenos/química , Camundongos , Neoplasias/patologia , Inanição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Chem Commun (Camb) ; 55(50): 7199-7202, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31165116

RESUMO

A nanodrug that can effectively combat cisplatin-resistant A549/CDDP cells was developed by protecting cisplatin from glutathione (GSH) detoxification trough a host-guest interaction between cisplatin and p-sulfonatocalix[4]arene. The enzymatic activity of glutathione S-transferases (GSTs) was also regulated by loaded 5-fluorouracil (5-FU).


Assuntos
Calixarenos/química , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Fenóis/química , Células A549 , Linhagem Celular Tumoral , Fluoruracila/administração & dosagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA