Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33206031

RESUMO

To determine if Ageratina adenophora can accumulate diverse pathogens from surrounding native plants, we intensively sampled fungal communities, including endophytes, leaf spot pathogens and canopy air fungi, associated with Ag. adenophora as well as native plants in its invasive range. In total, we collected 4542 foliar fungal strains from 10 geographic sites, including 1340 from healthy leaves of Ag. adenophora, 2051 from leaf spots of Ag. adenophora and 1151 from leaf spots of 56 species of native plants and crops. Taxonomically, the common fungal genera included Colletotrichum, Diaporthe, Alternaria, Nemania, Xylaria, Neofusicoccum, Nigrospora, Epicoccum, Gibberella, Pestalotiopsis, Irpex, Schizophyllum and Clonostachys. We also isolated the cultivable fungi from 12 air samples collected from six areas in Yunnan Province, PR China. Among the total of 1255 air fungal isolates, the most common genera were Cladosporium, Trichoderma and Epicoccum. Among them, two new Remotididymella species, Remotididymella ageratinae from leaf spot of Ag. adenophora and Remotididymella anemophila from canopy air of Ag. adenophora were found. The two species showed both asexual and sexual reproductive structures. The conidia of R. ageratinae and R. anemophila are larger than those of R. anthropophila and R. destructiva. The size of ascospores of R. ageratinae and R. anemophila also differ from R. bauhiniae. Phylogenetic analysis of the combined ITS, LSU rRNA, rpb2 and tub2 sequences showed that R. ageratinae and R. anemophila each formed a distinct clade, separated from all species previously described in Remotididymella and confirmed them as new species belonging to Remotididymella. Full descriptions of R. ageratinae and R. anemophila are provided in this study.


Assuntos
Ascomicetos/classificação , Filogenia , Plantas Daninhas/microbiologia , Ascomicetos/isolamento & purificação , Composição de Bases , China , DNA Fúngico/genética , Espécies Introduzidas , Folhas de Planta/microbiologia , Análise de Sequência de DNA
2.
Front Plant Sci ; 9: 1731, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559751

RESUMO

Yunnan pine is the most important tree species in SW China in both economical and ecological terms, but it is often killed by pine shoot beetles (Tomicus spp.). Tomicus beetles are secondary pests in temperate regions and the aggressiveness of the beetles in SW China is considered to be due to the warm subtropical climates as well as the beetles' virulent fungal associates. Here, we assessed the virulence of three blue-stain fungi (Leptographium wushanense, L. sinense and Ophiostoma canum) associated with pine shoot beetles to Yunnan pine (Pinus yunnanensis) in SW China. Following fungal inoculation, we measured necrotic lesion lengths, antioxidant enzyme activities and monoterpene concentrations in the stem phloem of Yunnan pine. Leptographium wushanense induced twice as long lesions as L. sinense and O. canum, and all three fungi induced significantly longer lesions than sterile agar control inoculations. The activity of three tested antioxidant enzymes (peroxidase, polyphenol oxidase, and superoxide dismutase) increased after both fungal inoculation and control inoculation. However, L. wushanense and L. sinense generally caused a greater increase in enzyme activities than O. canum and the control treatment. Fungal inoculation induced stronger increases in six major monoterpenes than the control treatment, but the difference was significant only for some fungus-monoterpene combinations. Overall, our results show that L. wushanense and L. sinense elicit stronger defense responses and thus are more virulent to Yunnan pine than O. canum. The two Leptographium species may thus contribute to the aggressiveness of their beetle vectors and could damage Yunnan pine across SW China if they spread from the restricted geographical area they have been found in so far.

3.
Nat Prod Res ; 32(9): 1050-1055, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28927295

RESUMO

Two new oxidation products-related aureonitol and cytochalasan were isolated from Chaetomium globosum fermented in Chinese yam (Dioscorea opposita) and determined as 10,11-dihydroxyl- aureonitol (1) and yamchaetoglobosin A (2). Compound 2 indicated significant inhibitory effect on nitric oxide production in LPS-activated macrophages, anti-acetylcholinesterase activity with the inhibition ratios of 92.5, 38.2% at 50 µM, and cytotoxicity to HL-60, A-549, SMMC-7721, MCF-7 and SW480 with the range of inhibition ratio at 51-96% for a concentration of 40 µM. Compounds 1, 2 showed weak anticoagulant activity with PT at 16.8 s. Few work was reported on the anti-acetylcholinesterase, and anticoagulant activities of aureonitol, and cytochalasan derivatives. The preliminary structure-activity relationship stated that the oxidation ring-opening in yamchaetoglobosin A can retain the inhibitory effect against NO production and tumor cell.


Assuntos
Anticoagulantes/farmacologia , Antineoplásicos/farmacologia , Chaetomium/química , Inibidores da Colinesterase/farmacologia , Endófitos/química , Células A549 , Anticoagulantes/química , Antineoplásicos/química , Chaetomium/metabolismo , Inibidores da Colinesterase/química , Dioscorea/microbiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Furanos/metabolismo , Células HL-60 , Humanos , Células MCF-7 , Estrutura Molecular , Óxido Nítrico/metabolismo , Relação Estrutura-Atividade
4.
Antonie Van Leeuwenhoek ; 92(1): 101-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17235482

RESUMO

Two new species of the fungal genus Trichoderma, Trichoderma compactum and Trichoderma yunnanense, isolated from rhizosphere of tobacco in Yunnan Province, China are described based on morphological characters and phylogenetic analyses of nucleotide sequences. Our DNA sequences included the internal transcribed spacer (ITS) regions of the rDNA cluster (ITS1 and ITS2), and partial sequences of the translation elongation factor 1-alpha (tef1) and a fragment of the gene coding for endochitinase 42 (ech42). The analyses show that T. compactum belongs to the Harzianum clade, and T. yunnanense belongs to the Hamatum clade.


Assuntos
DNA Ribossômico/genética , Trichoderma/genética , China , Quitinases/genética , DNA Fúngico/química , DNA Fúngico/genética , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Trichoderma/classificação , Trichoderma/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA