Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(4): 3053-3066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38043086

RESUMO

BACKGROUND: Online dose calculations before the delivery of radiation treatments have applications in dose delivery verification, online adaptation of treatment plans, and simulation-free treatment planning. While dose calculations by directly utilizing CBCT images are desired, dosimetric accuracy can be compromised due to relatively lower HU accuracy in CBCT images. PURPOSE: In this work, we propose a novel CBCT imaging pipeline to enhance the accuracy of CBCT-based dose calculations in the pelvis region. Our approach aims to improve the HU accuracy in CBCT images, thereby improving the overall accuracy of CBCT-based dose calculations prior to radiation treatment delivery. METHODS: An in-house developed quantitative CBCT pipeline was implemented to address the CBCT raw data contamination problem. The pipeline combines algorithmic data correction strategies and 2D antiscatter grid-based scatter rejection to achieve high CT number accuracy. To evaluate the effect of the quantitative CBCT pipeline on CBCT-based dose calculations, phantoms mimicking pelvis anatomy were scanned using a linac-mounted CBCT system, and a gold standard multidetector CT used for treatment planning (pCT). A total of 20 intensity-modulated treatment plans were generated for five targets, using 6 and 10 MV flattening filter-free beams, and utilizing small and large pelvis phantom images. For each treatment plan, four different dose calculations were performed using pCT images and three CBCT imaging configurations: quantitative CBCT, clinical CBCT protocol, and a high-performance 1D antiscatter grid (1D ASG). Subsequently, dosimetric accuracy was evaluated for both targets and organs at risk as a function of patient size, target location, beam energy, and CBCT imaging configuration. RESULTS: When compared to the gold-standard pCT, dosimetric errors in quantitative CBCT-based dose calculations were not significant across all phantom sizes, beam energies, and treatment sites. The largest error observed was 0.6% among all dose volume histogram metrics and evaluated dose calculations. In contrast, dosimetric errors reached up to 7% and 97% in clinical CBCT and high-performance ASG CBCT-based treatment plans, respectively. The largest dosimetric errors were observed in bony targets in the large phantom treated with 6 MV beams. The trends of dosimetric errors in organs at risk were similar to those observed in the targets. CONCLUSIONS: The proposed quantitative CBCT pipeline has the potential to provide comparable dose calculation accuracy to the gold-standard planning CT in photon radiation therapy for the abdomen and pelvis. These robust dose calculations could eliminate the need for density overrides in CBCT images and enable direct utilization of CBCT images for dose delivery monitoring or online treatment plan adaptations before the delivery of radiation treatments.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Pelve/diagnóstico por imagem , Dosagem Radioterapêutica , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Abdome
2.
ArXiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873015

RESUMO

Online dose calculations before radiation treatment have applications in dose delivery verification, plan adaptation, and treatment planning. We propose a novel CBCT imaging pipeline to enhance accuracy. Our approach aims to improve HU accuracy in CBCT images for more precise dose calculations. A quantitative CBCT pipeline was implemented, combining data correction strategies and scatter rejection, achieving high CT number accuracy. We evaluated the pipeline's effect using pelvis anatomy phantoms and found that dosimetric errors in quantitative CBCT-based dose calculations were minimal. In contrast, clinical CBCT and high-performance ASG CBCT-based plans showed significant errors. The proposed quantitative CBCT pipeline offers comparable dose calculation accuracy to the gold-standard planning CT, eliminating the need for density overrides and enabling precise dose delivery monitoring or online plan adaptations in radiation therapy.

3.
Radiat Res ; 184(2): 175-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26207683

RESUMO

X-band rapid-scan electron paramagnetic resonance (EPR) spectra from tooth enamel samples irradiated with doses of 0.5, 1 and 10 Gy had substantially improved signal-to-noise relative to conventional continuous wave EPR. The radiation-induced signal in a 60 mg of a tooth enamel sample irradiated with a 0.5 Gy dose was readily characterized in spectra recorded with 34 min data acquisition times. The coefficient of variance of the calculated dose for a 1 Gy irradiated sample, based on simulation of the first-derivative spectra for three replicates as the sum of native and radiation-induced signals, was 3.9% for continuous wave and 0.4% for rapid scan.


Assuntos
Esmalte Dentário/efeitos da radiação , Dente Molar/efeitos da radiação , Esmalte Dentário/patologia , Esmalte Dentário/fisiopatologia , Relação Dose-Resposta à Radiação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Dente Molar/fisiopatologia , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA