Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Ageing Res Rev ; 99: 102416, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002644

RESUMO

Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Mitocôndrias , Estresse Oxidativo , Polifenóis , Transdução de Sinais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/uso terapêutico
2.
J Cancer ; 15(13): 4328-4344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947390

RESUMO

Purpose: Atractylodes macrocephala Koidz is a widely used classical traditional Chinese herbal medicine, that has shown remarkable efficacy in cancers. Colorectal cancer (CRC) is the most common malignant tumor globally. Interferon (IFN)-γ, a prominent cytokine involved in anti-tumor immunity that has cytostatic, pro-apoptotic, and immune-stimulatory properties for the detection and removal of transformed cells. Atractylenolides-II (AT-II) belongs to the lactone compound that is derived from Atractylodes macrocephala Koidz with anti-cancer activity. However, whether AT-II combined with IFN-γ modulates CRC progression and the underlying mechanisms remain unclear. The present study aimed to elucidate the efficacy and pharmaceutical mechanism of action of AT-II combined with IFN-γ synergistically against CRC by regulating the NF-kB p65/PD-L1 signaling pathway. Methods: HT29 and HCT15 cells were treated with AT-II and IFN-γ alone or in combination and cell viability, migration, and invasion were then analyzed using Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. Furthermore, the underlying mechanism was investigated through western blot assay. The role of AT-II combined with IFN-γ on tumor growth and lung metastases was estimated in vivo. Finally, the population of lymphocytes in tumor tissues of lung metastatic C57BL/6 mice and the plasma cytokine levels were confirmed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Results: AT-II or the combination IFN-γ significantly inhibited the growth and migration abilities of CRC cells in vitro and in vivo. The biological mechanisms behind the beneficial effects of AT-II combined with IFN-γ were also measured and inhibition of p38 MAPK, FAK, Wnt/ß-catenin, Smad, and NF-kB p65/PD-L1 pathways was observed. Moreover, AT-II combined with IFN-γ significantly inhibited HCT15 xenograft tumor growth and lung metastases in C57BL/6 mice, which was accompanied by lymphocyte infiltration into the tumor tissues and inflammatory response inactivation. Conclusions: The results showed that the AT-II in combination with IFN-γ could be used as a potential strategy for tumor immunotherapy in CRC. More importantly, the mechanism by which AT-II suppressed CRC progressions was by inhibiting the NF-kB p65/PD-L1 signal pathway.

3.
Phytomedicine ; 128: 155355, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555773

RESUMO

BACKGROUND: Five Polyporales mushrooms, namely Amauroderma rugosum, Ganoderma lucidum, G. resinaceum, G. sinense and Trametes versicolor, are commonly used in China for managing insomnia. However, their active components for this application are not fully understood, restricting their universal recognition. PURPOSE: In this study, we aimed to identify sedative-hypnotic compounds shared by these five Polyporales mushrooms. STUDY DESIGN AND METHODS: A UPLC-Q-TOF-MS/MS-based untargeted metabolomics, including OPLS-DA (orthogonal projection of potential structure discriminant analysis) and OPLS (orthogonal projections to latent structures) analysis together with mouse assays, were used to identify the main sedative-hypnotic compounds shared by the five Polyporales mushrooms. A pentobarbital sodium-induced sleeping model was used to investigate the sedative-hypnotic effects of the five mushrooms and their sedative-hypnotic compounds. RESULTS: Ninety-two shared compounds in the five mushrooms were identified. Mouse assays showed that these mushrooms exerted sedative-hypnotic effects, with different potencies. Six triterpenes [four ganoderic acids (B, C1, F and H) and two ganoderenic acids (A and D)] were found to be the main sedative-hypnotic compounds shared by the five mushrooms. CONCLUSION: We for the first time found that these six triterpenes contribute to the sedative-hypnotic ability of the five mushrooms. Our novel findings provide pharmacological and chemical justifications for the use of the five medicinal mushrooms in managing insomnia.


Assuntos
Hipnóticos e Sedativos , Metabolômica , Polyporales , Espectrometria de Massas em Tandem , Animais , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/química , Camundongos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polyporales/química , Masculino , Agaricales/química , Sono/efeitos dos fármacos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Reishi/química
4.
Food Funct ; 15(2): 481-492, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38197139

RESUMO

Studies have shown that dietary polysaccharides, which are widely present in natural foods, have an important impact on the intestinal mucosal barrier. Dietary polysaccharides can maintain the intestinal barrier function through multiple mechanisms. The intestinal barrier is composed of mechanical, chemical, immune, and biological barriers, and dietary polysaccharides, as a bioactive component, can promote and regulate these four barriers. Dietary polysaccharides can enhance the expression of tight junction proteins and mucins such as occludin-1 and zonula occludens-1 (ZO-1) between intestinal epithelial cells, inhibit inflammatory response and oxidative stress, increase the growth of beneficial bacteria, produce beneficial metabolites such as short chain fatty acids (SCFAs), and promote the proliferation and metabolism of immune cells. Given the critical role of the intestinal mucosal system in health and disease, the protective effects of dietary polysaccharides may be potentially valuable for the prevention and treatment of gut-related diseases. Therefore, it is of great significance to further study the mechanism and application prospects of the intestinal mucosal barrier derived from plant, animal, fungal and bacterial sources.


Assuntos
Mucosa Intestinal , Polissacarídeos , Animais , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Mucosa Intestinal/metabolismo , Células Epiteliais , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Ocludina/genética , Ocludina/metabolismo
5.
Phytomedicine ; 121: 155111, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804819

RESUMO

BACKGROUND: Current evidence indicates a rising global prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD), which is closely associated to conditions such as obesity, dyslipidemia, insulin resistance, and metabolic syndrome. The relationship between the gut microbiome and metabolites in NAFLD is gaining attention understanding the pathogenesis and progression of dysregulated lipid metabolism and inflammation. The Xie Zhuo Tiao Zhi (XZTZ) decoction has been employed in clinical practice for alleviating hyperlipidemia and symptoms related to metabolic disorders. However, the pharmacological mechanisms underlying the effects of XZTZ remain to be elucidated. PURPOSE: The objective of this study was to examine the pharmacological mechanisms underlying the hypolipidemic and anti-inflammatory effects of XZTZ decoction in a mouse model of NAFLD, as well as the effects of supplementing exogenous metabolites on PO induced cell damage and lipid accumulation in cultured hepatocytes. METHODS: A high-fat diet (HFD) mouse model was established to examine the effects of XZTZ through oral gavage. The general condition of mice and the protective effect of XZTZ on liver injury were evaluated using histological and biochemical methods. Hematoxylin and eosin staining (H&E) staining and oil red O staining were performed to assess inflammatory and lipid accumulation detection, and cytokine levels were quantitatively analyzed. Additionally, the study included full-length 16S rRNA sequencing, liver transcriptome analysis, and non-targeted metabolomics analysis to investigate the relationship among intestinal microbiome, liver metabolic function, and XZTZ decoction. RESULTS: XZTZ had a significant impact on the microbial community structure in NAFLD mice. Notably, the abundance of Ileibacterium valens, which was significantly enriched by XZTZ, exhibited a negative correlation with liver injury biomarkers such as, alanine transaminase (ALT) and aspartate transaminase (AST) activity. Moreover, treatment with XZTZ led to a significant enrichment of the purine metabolism pathway in liver tissue metabolites, with inosine, a purine metabolite, showing a significant positive correlation with the abundance of I. valens. XZTZ and inosine also significantly enhanced fatty acid ß-oxidation, which led to a reduction in the expression of pro-inflammatory cytokines and the inhibition of liver pyroptosis. These effects contributed to the mitigation of liver injury and hepatocyte damage, both in vivo and vitro. Furthermore, the utilization of HPLC fingerprints and UPLC-Q-TOF-MS elucidated the principal constituents within the XZTZ decoction, including naringin, neohesperidin, atractylenolide III, 23-o-Acetylalisol B, pachymic acid, and ursolic acid which are likely responsible for its therapeutic efficacy. Further investigations are imperative to fully uncover and validate the pharmacodynamic mechanisms underlying these observations. CONCLUSION: The administration of XZTZ decoction demonstrates a protective effect on the livers of NAFLD mice by inhibiting lipid accumulation and reducing hepatocyte inflammatory damage. This protective effect is mediated by the upregulation of I.valens abundance in the intestine, highlighting the importance of the gut-liver axis. Furthermore, the presesnce of inosine, adenosine, and their derivatives are important in promoting the protective effects of XZTZ. Furthermore, the in vitro approaching, we provide hitherto undocumented evidence indicating that the inosine significantly improves lipid accumulation, inflammatory damage, and pyroptosis in AML12 cells incubated with free fatty acids.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Piroptose , RNA Ribossômico 16S , Fígado , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados/metabolismo , Purinas/farmacologia , Inosina/metabolismo , Inosina/farmacologia , Inosina/uso terapêutico , Camundongos Endogâmicos C57BL
6.
J Med Chem ; 66(21): 15006-15024, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37856840

RESUMO

Preclinical and clinical studies have demonstrated the synergistic effect of microtubule-targeting agents in combination with Janus kinase 2 (JAK2) inhibitors, prompting the development of single agents with enhanced therapeutic efficacy by dually inhibiting tubulin polymerization and JAK2. Herein, we designed and synthesized a series of substituted 2-amino[1,2,4]triazolopyrimidines and related heterocycles as dual inhibitors for tubulin polymerization and JAK2. Most of these compounds exhibited potent antiproliferative activity against the selected cancer cells, with compound 7g being the most active. This compound effectively inhibits both tubulin assembly and JAK2 activity. Furthermore, phosphorylated compound 7g (i.e., compound 7g-P) could efficiently convert to compound 7g in vivo. Compound 7g, whether it was administered directly or in the form of a phosphorylated prodrug (i.e., compound 7g-P), significantly inhibited the growth of A549 xenografts in nude mice. The present findings strongly suggest that compound 7g represents a promising chemotherapeutic agent with high antitumor efficacy.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Animais , Camundongos , Humanos , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Polimerização , Janus Quinase 2 , Camundongos Nus , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microtúbulos
7.
Phytomedicine ; 114: 154802, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37054486

RESUMO

BACKGROUND: A tri-herb formulation comprising Ganoderma (the dried fruiting body of Ganoderma lucidum), Puerariae Thomsonii Radix (the dried root of Pueraria thomsonii) and Hoveniae Semen (the dried mature seed of Hovenia acerba) -GPH for short- has been using for treating liver injury; however, the pharmacological basis of this application of GPH is unknown. This study aimed to investigate the liver protective effects and mechanisms of action of an ethanolic extract of GPH (GPHE) in mice. METHODS: To control the quality of GPHE, the contents of ganodermanontriol, puerarin and kaempferol in the extract were quantified by ultra-performance liquid chromatography. An ethanol (6 ml/kg, i.g.)-induced liver injury ICR mouse model was employed to investigate the hepatoprotective effects of GPHE. RNA-sequencing analysis and bioassays were performed to reveal the mechanisms of action of GPHE. RESULTS: The contents of ganodermanontriol, puerarin and kaempferol in GPHE were 0.0632%, 3.627% and 0.0149%, respectively. Daily i.g. administration of 0.25, 0.5 or 1 g/kg of GPHE for 15 consecutive days suppressed ethanol (6 ml/kg, i.g., at day 15)-induced upregulation of serum AST and ALT levels and improved histological conditions in mouse livers, indicating that GPHE protects mice from ethanol-induced liver injury. Mechanistically, GPHE downregulated the mRNA level of Dusp1 (encoding MKP1 protein, an inhibitor of the mitogen-activated protein kinases JNK, p38 and ERK), and upregulated expression and phosphorylation of JNK, p38 and ERK, which are involved in cell survival in mouse liver tissues. Also, GPHE increased PCNA (a cell proliferation marker) expression and reduced TUNEL-positive (apoptotic) cells in mouse livers. CONCLUSION: GPHE protects against ethanol-induced liver injury, and this effect of GPHE is associated with regulation of the MKP1/MAPK pathway. This study provides pharmacological justifications for the use of GPH in treating liver injury, and suggests that GPHE has potential to be developed into a modern medication for managing liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Etanol , Camundongos , Animais , Etanol/farmacologia , Quempferóis/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Camundongos Endogâmicos ICR , Fígado , Fosfatases da Proteína Quinase Ativada por Mitógeno/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
8.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770971

RESUMO

Cellular mesenchymal-epithelial transition factor (c-Met), an oncogenic transmembrane receptor tyrosine kinase (RTK), plays an essential role in cell proliferation during embryo development and liver regeneration. Thioredoxin reductase (TrxR) is overexpressed and constitutively active in most tumors closely related to cancer recurrence. Multi-target-directed ligands (MTDLs) strategy provides a logical approach to drug combinations and would adequately address the pathological complexity of cancer. In this work, we designed and synthesized a series of selenium-containing tepotinib derivatives by means of selenium-based bioisosteric modifications and evaluated their antiproliferative activity. Most of these selenium-containing hybrids exhibited potent dual inhibitory activity toward c-Met and TrxR. Among them, compound 8b was the most active, with an IC50 value of 10 nM against MHCC97H cells. Studies on the mechanism of action revealed that compound 8b triggered cell cycle arrest at the G1 phase and caused ROS accumulations by targeting TrxR, and these effects eventually led to cell apoptosis. These findings strongly suggest that compound 8b serves as a dual inhibitor of c-Met and TrxR, warranting further exploitation for cancer therapy.


Assuntos
Antineoplásicos , Selênio , Antineoplásicos/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Selênio/farmacologia , Piperidinas/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
9.
Phytomedicine ; 109: 154572, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610164

RESUMO

BACKGROUND: Melanoma is an aggressive malignancy with a high mortality rate. Signal transducer and activator of transcription 3 (STAT3), an oncoprotein, is considered as an effective target for treating melanoma. Chrysoeriol is a flavonoid compound, and possesses anti-tumor activity in lung cancer, breast cancer and multiple myeloma; while whether it has anti-melanoma effects is still not known. Chrysoeriol has been shown to restrain STAT3 signaling in an inflammation mouse model. PURPOSE: In this study, the anti-melanoma effects of chrysoeriol and the involvement of STAT3 signaling in these effects were investigated. STUDY DESIGN AND METHODS: CCK8 assays, 5-ethynyl-2'-deoxyuridine (EdU) staining, Annexin V-FITC/PI staining, Western blot analyses of cleaved caspase-9 and wound healing assays were used to study the anti-melanoma effects of chrysoeriol in cell models. A B16F10 melanoma bearing mouse model was used to evaluate the in vivo anti-melanoma effects of chrysoeriol. Indicators of cell proliferation, cell apoptosis and angiogeneis in melanoma tissues were detected by immunohistochemistry (IHC) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Immune cells in melanoma tissues were analyzed by flow cytometry. STAT3-overactivated cell models were used to investigate the involvement of STAT3 signaling in the anti-melanoma effects of chrysoeriol. Molecular dynamics (MD) simulations and surface plasmon resonance (SPR) assays were conducted to determine whether chrysoeriol binds to Src, an upstream kinase of STAT3. RESULTS: The results of cell experiments showed that chrysoeriol dose-dependently inhibited viability, proliferation and migration of, and induced apoptosis in, A375 and B16F10 melanoma cells. Chrysoeriol inhibited the phosphorylation of STAT3, and downregulated the expression of STAT3-target genes involved in melanoma growth and metastasis. Mouse studies showed that chrysoeriol restrained melanoma growth and tumor-related angiogenesis, and altered compositions of immune cells in melanoma microenvironment. Chrysoeriol also inhibited STAT3 signaling in B16F10 allografts. Chrysoeriol's viability-inhibiting effects were attenuated by over-activating STAT3 in A375 cells. Furthermore, chrysoeriol bound to the protein kinase domain of Src, and suppressed Src phosphorylation in melanoma cells and tissues. CONCLUSION: This study, for the first time, demonstrates that chrysoeriol has anti-melanoma effects, and these effects are partially due to inhibiting STAT3 signaling. Our findings indicate that chrysoeriol has the potential to be developed into an anti-melanoma agent.


Assuntos
Flavonas , Melanoma , Animais , Camundongos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Melanoma/tratamento farmacológico , Flavonas/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Microambiente Tumoral
10.
Molecules ; 29(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202597

RESUMO

Peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1 (CPT1) are important targets of lipid metabolism regulation for nonalcoholic fatty liver disease (NAFLD) therapy. In the present study, a set of novel indole ethylamine derivatives (4, 5, 8, 9) were designed and synthesized. The target product (compound 9) can effectively activate PPARα and CPT1a. Consistently, in vitro assays demonstrated its impact on the lipid accumulation of oleic acid (OA)-induced AML12 cells. Compared with AML12 cells treated only with OA, supplementation with 5, 10, and 20 µM of compound 9 reduced the levels of intracellular triglyceride (by 28.07%, 37.55%, and 51.33%) with greater inhibitory activity relative to the commercial PPARα agonist fenofibrate. Moreover, the compound 9 supplementations upregulated the expression of hormone-sensitive triglyceride lipase (HSL) and adipose triglyceride lipase (ATGL) and upregulated the phosphorylation of acetyl-CoA carboxylase (ACC) related to fatty acid oxidation and lipogenesis. This dual-target compound with lipid metabolism regulatory efficacy may represent a promising type of drug lead for NAFLD therapy.


Assuntos
Antipsicóticos , Hepatopatia Gordurosa não Alcoólica , Humanos , Metabolismo dos Lipídeos , PPAR alfa , Carnitina O-Palmitoiltransferase , Etilaminas , Ácido Oleico , Lipase , Indóis/farmacologia
11.
Front Surg ; 9: 922150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338616

RESUMO

Background: There are still differences in the prognostic factors of renal cell carcinoma with sarcomatoid dedifferentiation (sRCC). The aim of this study was to evaluate important predictors of survival in patients with sRCC. Patients and methods: A comprehensive search of PubMed, Embase, and Cochrane Library was conducted to identify eligible studies. The endpoints embraced overall survival (OS), cancer-specific survival (CSS), and progression-free survival (PFS). Hazard ratios (HRs) and related 95% confidence intervals (CIs) were extracted. Results: A total of 13 studies were included for analyses. The pooled results showed that high European Cooperative Oncology Group performance score (HR 2.39, 95% CI 1.32-4.30; P = 0.004), high T stage (HR 2.18, 95% CI 1.66-2.86; P < 0.001), positive lymph node (HR 1.54, 95% CI 1.40-1.69; P < 0.001), distant metastasis (HR 2.52, 95% CI 1.99-3.21; P < 0.001), lung metastases (HR 1.45, 95% CI 1.16-1.80; P < 0.001), liver metastases (HR 1.71, 95% CI 1.30-2.25; P < 0.001), tumor necrosis (HR 1.78, 95% CI 1.14-2.80; P = 0.010), and percentage sarcomatoid ≥50% (HR 2.35, 95% CI 1.57-3.52; P < 0.001) were associated with unfavorable OS. Positive lymph node (HR 1.57, 95% CI 1.33-1.85; P < 0.001) and high neutrophil to lymphocyte ratio (HR 1.16, 95% CI 1.04-1.29; P = 0.008) were associated with unfavorable CSS. High T stage (HR 1.93 95% CI 1.44-2.58; P < 0.001) was associated with unfavorable progression-free survival. Conclusions: A meta-analysis of available data identified important prognostic factors for CSS, OS, and PFS of sRCC, which should be systematically evaluated for patient counseling, risk stratification, and treatment selection. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=249449.

12.
BMC Complement Med Ther ; 22(1): 275, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261841

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common inflammatory skin disease that compromises the skin's barrier function and capacity to retain moisture. Cnidii Fructus (CF), the dried fruits of Cnidium monnieri, has long been used to treat atopic dermatitis (AD) in China. However, the anti-AD compounds and mechanisms of CF are not fully understood. In this study, we evaluated the active compounds and molecular targets of CF in treating AD. METHODS: The Traditional Chinese Medicine Systems Pharmacology database was used to acquire information regarding the compounds that occur in the herb. Targets of these compounds were predicted using the SwissTargetPrediction website tool. AD-related genes were collected from the GeneCards database. Gene ontology (GO) enrichment analysis and KEGG pathway analysis of proteins that are targeted by active compounds of CF and encoded by AD-related genes were performed using Database for Annotation, Visualization, and Integrated Discovery Bioinformatics Resources. A "compound-target" network was constructed and analyzed using Cytoscape Software. Molecular docking was performed using BIOVIA Discovery Studio Visualizer and AutoDock Vina. RESULTS: We identified 19 active compounds in CF, 532 potential targets for these compounds, and 1540 genes related to AD. Results of GO enrichment indicated that CF affects biological processes and molecular functions, such as inflammatory response and steroid hormone receptor activity, which may be associated with its anti-AD effects. KEGG pathway analyses showed that PI3K-Akt signaling, calcium signaling, Rap1 signaling, and cAMP signaling pathways are the main pathways involved in the anti-AD effects of CF. Molecular docking analyses revealed that the key active compounds in CF, such as (E)-2,3-bis(2-keto-7-methoxy-chromen-8-yl)acrolein, ar-curcumene, and diosmetin, can bind the main therapeutic targets AKT1, SRC, MAPK3, EGFR, CASP3, and PTGS2. CONCLUSIONS: Results of the present study establish a foundation for further investigation of the anti-AD compounds and mechanisms of CF and provide a basis for developing modern anti-AD agents based on compounds that occur in CF.


Assuntos
Dermatite Atópica , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Caspase 3 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Frutas , Dermatite Atópica/tratamento farmacológico , Ciclo-Oxigenase 2 , Farmacologia em Rede , Acroleína , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Esteroides , Hormônios , Receptores ErbB
13.
Pharmacol Res ; 184: 106461, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36152739

RESUMO

Phytochemicals have been used as one of the sources for the development of anti-obesity drugs. Plants are rich in a variety of bioactive compounds including polyphenols, saponins and terpenes. Phytochemicals inhibit adipocyte differentiation by inhibiting the transcription and translation of adipogenesis transcription factors such as C/EBPα and PPARγ. It has been proved that phytochemicals inhibit the genes and proteins associated with adipogenesis and lipid accumulation by activating Wnt/ß-catenin signaling pathway. The activation of Wnt/ß-catenin signaling pathway by phytochemicals is multi-target regulation, including the regulation of pathway critical factor ß-catenin and its target gene, the downregulation of destruction complex, and the up-regulation of Wnt ligands, its cell surface receptor and Wnt antagonist. In this review, the literature on the anti-obesity effect of phytochemicals through Wnt/ß-catenin signaling pathway is collected from Google Scholar, Scopus, PubMed, and Web of Science, and summarizes the regulation mechanism of phytochemicals in this pathway. As one of the alternative methods of weight loss drugs, Phytochemicals inhibit adipogenesis through Wnt/ß-catenin signaling pathway. More progress in relevant fields may pose phytochemicals as the main source of anti-obesity treatment.


Assuntos
Fármacos Antiobesidade , Saponinas , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia , Animais , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Diferenciação Celular , Lipídeos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR gama/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Saponinas/farmacologia , Terpenos/metabolismo , Terpenos/farmacologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
14.
Phytomedicine ; 102: 154194, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35660348

RESUMO

BACKGROUND: Uncontrolled inflammation causes health problems. Extracellular signal-regulated kinase (ERK) phosphorylates signal transducer and activator of transcription 3 (STAT3) at Ser727, resulting in inflammation. The leaf of Vernonia amygdalina (VA) is a medicinal herb for managing inflammation-associated diseases. Oral administration or topical application of VA leaf extract exerts anti-inflammatory effects in rat models. However, the anti-inflammatory mechanisms of the herb are not fully understood. PURPOSE: In this study, we aimed to investigate the involvement of ERK/STAT3 (Ser727) signaling in the anti-inflammatory effects of an ethanolic extract of VA leaves. STUDY DESIGN AND METHODS: Extracts of VA leaves were prepared with different concentrations of ethanol. A LPS-stimulated RAW264.7 cell model was used for in vitro assays, and a TPA (12-O-tetradecanoylphorbol-13-acetate)-induced ear edema mouse model was employed for in vivo assays. The 95% ethanol extract of VA leaves (VAE) exerted the strongest inhibitory effect on nitric oxide (NO) production in LPS-stimulated macrophages; thus it was selected for use in this study. Hematoxylin and eosin (H&E) staining was used to examine pathological conditions of mouse ear tissues. Griess reagent was employed to examine NO generation in cell cultures. Immunoblotting and ELISA were used to examine protein levels, and RT-qPCR was employed to examine mRNA levels. RESULTS: Topical application of VAE ameliorated mouse ear edema induced by TPA. VAE suppressed the phosphorylation of ERK (Thr202/Tyr204) and STAT3 (Ser727); and decreased protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, IL-1ß and tumor necrosis factor-α (TNF-α) in the mouse ear tissues and in LPS-stimulated RAW 264.7 cells. VAE also inhibited NO production, and lowered mRNA levels of IL-6, IL-1ß and TNF-α in the macrophages. CONCLUSIONS: VAE ameliorates TPA-induced mouse ear edema. Suppression of ERK/STAT3 (Ser727) signaling is involved in VAE's anti-inflammatory effects. These novel data provide further pharmacological justifications for the medicinal use of VA in treating inflammation-associated diseases, and lay the groundwork for developing VAE into a new anti-inflammatory agent.


Assuntos
Fator de Transcrição STAT3 , Vernonia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/tratamento farmacológico , Etanol , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/uso terapêutico , RNA Mensageiro , Ratos , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
J Ginseng Res ; 46(3): 418-425, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600776

RESUMO

Background: Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods: Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results: Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, over-activation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions: Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.

16.
Front Oncol ; 12: 879803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480099

RESUMO

Background: To investigate the potential prognostic role of C-reactive protein to albumin ratio (CAR) in patients with urinary cancers, including renal cell carcinoma (RCC), bladder cancer (BC), and prostate cancer (PC). Methods: We searched and screened literatures with PubMed, Embase, Cochrane Library, and Web of Science in January 2022. We applied combined hazard ratios (HRs) and 95% confidence intervals (CIs) to assess the associations. Results: Thirteen studies including 2,941 cases were analyzed in our study. Merged results indicated that highly pretreated CAR was associated with inferior overall survival (HR 2.21, 95% CI 1.86-2.62, p < 0.001) and progression-free survival (HR 1.85, 95% CI 1.36-2.52, p < 0.001) for urinary cancers. In a subgroup analysis of OS by tumor type, CAR can be a predictor in RCC (HR 2.10, 95% CI 1.72-2.56), BC (HR 3.35, 95% CI 1.94-5.80), and PC (HR 2.20, 95% CI 1.43-3.37). In a subgroup analysis of PFS by tumor type, CAR can be a predictor in BC (HR 1.76, 95% CI 1.03-3.02), and RCC (HR 1.90, 95% CI 1.25-2.89). The reliability and robustness of results were confirmed. Conclusions: High pretreated CAR was effective predictor of poor survival in patients with urinary cancers and can act as prognostic factor for these cases. Systematic Review Registration: PROSPERO (CRD42022306414).

17.
J Ethnopharmacol ; 293: 115251, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35381310

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gastritis can lead to ulcers and the development of gastric cancer. The rhizome of Atractylodes macrocephala Koidz. (Asteraceae), a traditional Chinese medicinal herb, is prescribed for the treatment of gastric disorders, hepatitis and rheumatism. Its bio-active compounds are considered to be particularly effective in this regard. However, the molecular processes of the herb's anti-inflammatory activity remain obscure. This study elucidates a mechanism upon which an ethanolic extract of this herb (Am-EE) exerts anti-inflammation effects in RAW264.7 macrophage cells (RAW cells) stimulated by lipopolysaccharide (LPS) treatment and HCl Ethanol-stimulated gastritis rats. AIM OF THE STUDY: To investigate the anti-gastritis activities of Am-EE and explore the mode of action. MATERIALS AND METHODS: Ethanol (95%) was used to prepare Am-EE. The quality of the extract was monitored by HPLC analysis. The in vivo effects of this extract were examined in an HCl Ethanol-stimulated gastritis rat model, while LPS-stimulated RAW cells were used for in vitro assays. Cell viability and nitric oxide (NO) production were observed by MTT and Griess assays. Real-time PCR was used to examine mRNA expression. The PGE2 ELISA kit was employed to detect prostaglandin E2 (PGE2). Enzyme activities and protein contents were examined by immunoblotting. Luciferase reporter gene assays (LRA) were employed to observe nuclear transcription factor (NF)-κB activity. The SPSS (SPSS Inc., Chicago, Illinois, United States) application was used for statistical examination. RESULTS: HPLC analysis indicates that Am-EE contains atractylenolide-1 (AT-1, 1.33%, w/w) and atractylenolide-2 (AT-2, 1.25%, w/w) (Additional Figure. A1). Gastric tissue damage (induced by HCl Ethanol) was significantly decreased in SD rats following intra-gastric application of 35 mg/kg Am-EE. Indistinguishable to the anti-inflammation effects of 35 mg/kg ranitidine (gastric medication). Am-EE treatment also reduced LPS-mediated nitric oxide (NO) and prostaglandin E2 (PGE2) production. The mRNA and protein synthesis of inducible cyclooxygenase (COX)-2 and NO synthase (iNOS) was down-regulated following treatment in RAW cells. Am-EE decreased NF-κB (p50) nuclear protein levels and inhibited NF-κB-stimulated LRA activity in RAW cells. Lastly, Am-EE decreased the up-regulated levels of phosphorylated IκBα and Akt proteins in rat stomach lysates and in LPS challenged RAW cell samples. CONCLUSION: Our study illustrates that Am-EE suppresses the Akt/IκBα/NF-κB pathway and exerts an anti-inflammatory effect. These novel conclusions provide a pharmacological basis for the clinical use of the A. macrocephala rhizome in the treatment and prevention of gastritis and gastric cancer.


Assuntos
Atractylodes , Gastrite , Extratos Vegetais , Neoplasias Gástricas , Animais , Anti-Inflamatórios/farmacologia , Atractylodes/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Etanol/uso terapêutico , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Rizoma/química , Neoplasias Gástricas/tratamento farmacológico
18.
Biochem Pharmacol ; 200: 115044, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460630

RESUMO

Signal transducer and activator of transcription 3 (STAT3) has been proposed as a target for melanoma prevention. Luteolin, a bioactive flavonoid abundant inmedicinal herbs, has been reported to have anti-melanoma activity in vitro. However, its in vivo anti-melanoma effects and underlying mechanisms have not been fully elucidated. In this study, ten cell lines and two mouse models (B16F10 allograft and A375 xenograft models) were used for assessing the in vitro and in vivo anti-melanoma effects of luteolin. A STAT3 over-activated stable A375 cell line was used to determine the contribution of STAT3 signaling in luteolin's anti-melanoma effects. Results showed that luteolin dose-dependently reduced viability of melanoma cells. Luteolin also induced apoptosis in, and suppressed migration and invasion of, A375 and B16F10 melanoma cells. Mechanistically, luteolin inhibited phosphorylation of STAT3 and Src (an upstream kinase of STAT3), accelerated ubiquitin-proteasome pathway-mediated STAT3 degradation, and downregulated the expression of STAT3-targeted genes involved in cell survival and invasion in melanoma cells. Molecular modelling and surface plasmon resonance imaging showed that luteolin stably bound to the protein kinase domain of Src. Animal studies demonstrated that prophylactic administration of luteolin restrained melanoma growth and Src/STAT3 signaling in both A375 and B16F10 melanoma-bearing mice. Moreover, luteolin's anti-melanoma effects were diminished by STAT3 over-activation in A375 cells. Our findings indicate that luteolin inhibits STAT3 signaling by suppressing STAT3 activation and promoting STAT3 protein degradation in melanoma cells, thereby exhibiting anti-melanoma effects. This study provides further pharmacological groundwork for developing luteolin as a chemopreventive agent against melanoma.


Assuntos
Luteolina , Melanoma , Fator de Transcrição STAT3 , Animais , Apoptose , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Luteolina/farmacologia , Melanoma/tratamento farmacológico , Camundongos , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Fator de Transcrição STAT3/metabolismo , Ubiquitinação
20.
Oxid Med Cell Longev ; 2022: 4557532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355867

RESUMO

Objective: Hepatic metabolic disorder induced by lipotoxicity plays a detrimental role in metabolic fatty liver disease pathogenesis. Cimifugin (Cim), a coumarin derivative extracted from the root of Saposhnikovia divaricata, possesses multiple biological properties against inflammation, allergy, and oxidative stress. However, limited study has addressed the hepatoprotective role of Cim. Here, we investigate the protective effect of Cim against lipotoxicity-induced cytotoxicity and steatosis in hepatocytes and clarify its potential mechanisms. Methods: AML-12, a nontransformed mouse hepatocyte cell line, was employed in this study. The cells were incubated with palmitate or oleate to imitate hepatotoxicity or steatosis model, respectively. Results: Cim significantly reversed palmitate-induced hepatocellular injury in a dose-dependent manner, accompanied by improvements in oxidative stress and mitochondrial damage. Cim pretreatment reversed palmitate-stimulated TLR4/p38 MAPK activation and SIRT1 reduction without affecting JNK, ERK1/2, and AMPK pathways. The hepatoprotective effects of Cim were abolished either through activating TLR4/p38 by their pharmacological agonists or genetical silencing SIRT1 via special siRNA, indicating a mechanistic involvement. Moreover, Cim treatment improved oleate-induced hepatocellular lipid accumulation, which could be blocked by either TLR4 stimulation or SIRT1 knockdown. We observed that SIRT1 was a potential target of TLR4 in palmitate-treated hepatocytes, since TLR4 agonist LPS aggravated, whereas TLR4 antagonist CLI-095 alleviated palmitate-decreased SIRT1 expression. SIRT1 knockdown did not affect palmitate-induced TLR4. In addition, TLR4 activation by LPS significantly abolished Cim-protected SIRT1 reduction induced by palmitate. These results collaboratively indicated that TLR4-regulated SIRT1 pathways was mechanistically involved in the protective effects of Cim against lipotoxicity. Conclusion: In brief, we demonstrate the protective effects of Cim against lipotoxicity-induced cell death and steatosis in hepatocytes. TLR4-regulated p38 MAPK and SIRT1 pathways are involved in Cim-protected hepatic lipotoxicity. Cim is a potential candidate for improving hepatic metabolic disorders mediated by lipotoxicity.


Assuntos
Fígado Gorduroso , Sirtuína 1 , Animais , Cromonas , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Camundongos , Sirtuína 1/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA