Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Theranostics ; 14(8): 3193-3212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855185

RESUMO

As a developing radiation treatment for tumors, neutron capture therapy (NCT) has less side effects and a higher efficacy than conventional radiation therapy. Drugs with specific isotopes are indispensable counterparts of NCT, as they are the indespensable part of the neutron capture reaction. Since the creation of the first and second generations of boron-containing reagents, NCT has significantly advanced. Notwithstanding, the extant NCT medications, predominantly comprised of small molecule boron medicines, have encountered challenges such monofunctionality, inadequate targeting of tumors, and hypermetabolism. There is an urgent need to promote the research and development of new types of NCT drugs. Bio-nanomaterials can be introduced into the realm of NCT, and nanotechnology can give conventional medications richer functionality and significant adaptability. This can complement the advantages of each other and is expected to develop more new drugs with less toxicity, low side effects, better tumor targeting, and high biocompatibility. In this review, we summarized the research progress of nano-drugs in NCT based on the different types and sources of isotopes used, and introduced the attempts and efforts made by relevant researchers in combining nanomaterials with NCT, hoping to provide pivotal references for promoting the development of the field of tumor radiotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Animais , Terapia por Captura de Nêutron/métodos , Nanopartículas/química , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Nanotecnologia/métodos , Terapia por Captura de Nêutron de Boro/métodos , Compostos de Boro/uso terapêutico , Compostos de Boro/química , Compostos de Boro/farmacologia
2.
Anal Chem ; 96(19): 7411-7420, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38652893

RESUMO

Accurate analysis of microRNAs (miRNAs) at the single-cell level is extremely important for deeply understanding their multiple and intricate biological functions. Despite some advancements in analyzing single-cell miRNAs, challenges such as intracellular interferences and insufficient detection limits still remain. In this work, an ultrasensitive nanopore sensor for quantitative single-cell miRNA-155 detection is constructed based on ionic current rectification (ICR) coupled with enzyme-free catalytic hairpin assembly (CHA). Benefiting from the enzyme-free CHA amplification strategy, the detection limit of the nanopore sensor for miRNA-155 reaches 10 fM and the nanopore sensor is more adaptable to complex intracellular environments. With the nanopore sensor, the concentration of miRNA-155 in living single cells is quantified to realize the early diagnosis of triple-negative breast cancer (TNBC). Furthermore, the nanopore sensor can be applied in screening anticancer drugs by tracking the expression level of miRNA-155. This work provides an adaptive and universal method for quantitatively analyzing intracellular miRNAs, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.


Assuntos
MicroRNAs , Nanoporos , Análise de Célula Única , Neoplasias de Mama Triplo Negativas , MicroRNAs/análise , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Feminino , Linhagem Celular Tumoral , Limite de Detecção
3.
Clin Pharmacol Drug Dev ; 13(4): 410-418, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311833

RESUMO

Baxdrostat is a selective small-molecule aldosterone synthase inhibitor in development for treatment of hypertension and chronic kidney disease. This phase 1, open-label, parallel-group study assessed the safety and pharmacokinetics (PK) of baxdrostat in participants with varying degrees of renal function. Participants were enrolled into control (estimated glomerular filtration rate [eGFR] ≥60 mL/min), moderate to severe renal impairment (eGFR 15-59 mL/min), or kidney failure (eGFR <15 mL/min) groups and received a single 10-mg baxdrostat dose followed by 7 days of inpatient PK blood and urine sampling. Safety was assessed by adverse events, clinical laboratory evaluations, vital signs, physical examinations, and electrocardiograms (ECGs). Thirty-2 participants completed the study. There were no deaths and only 1 mild drug-related adverse event (diarrhea). No clinically meaningful changes in laboratory values, vital signs, physical examinations, or ECGs occurred. Plasma concentration-time curves of baxdrostat were similar among all groups. Urine PK parameters were similar (approximately 12% excreted) in the moderate to severe renal impairment and control groups. Inadequate urine production in the kidney failure group resulted in minimal urinary baxdrostat excretion. Renal impairment had no significant impact on systemic exposure or clearance of baxdrostat, suggesting that dose adjustment due to PK differences in patients with kidney disease is unnecessary.


Assuntos
Insuficiência Renal Crônica , Insuficiência Renal , Humanos , Citocromo P-450 CYP11B2 , Taxa de Filtração Glomerular , Rim
4.
Int J Comput Assist Radiol Surg ; 19(4): 779-790, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38170416

RESUMO

PURPOSE: Dental health has been getting increased attention. Timely detection of non-normal teeth (caries, residual root, retainer, teeth filling, etc.) is of great importance for people's health, well-being, and quality of life. This work proposes a rapid detection of non-normal teeth based on improved Mask R-CNN, aiming to achieve comprehensive screening of non-normal teeth on dental X-ray images. METHODS: An improved Mask R-CNN based on attention mechanism was used to develop a non-normal teeth detection method trained on a high-quality annotated dataset, which can segment the whole mask of each non-normal tooth on the dental X-ray image immediately. RESULTS: The average precision (AP) of the proposed non-normal teeth detection was 0.795 with an intersection-over-union of 0.5 and max detections (maxDets) of 32, which was higher than that of the typical Mask R-CNN method (AP = 0.750). In addition, validation experiments showed that the evaluation metrics (AP, recall, precision-recall (P-R) curve) of the proposed method were superior to those of the Mask R-CNN method. Furthermore, the experimental results indicated that proposed method exhibited a high sensitivity (95.65%) in detecting secondary caries. The proposed method took about 0.12 s to segment non-normal teeth on one dental X-ray image using the laptop (8G memory, NVIDIA RTX 3060 graphics processing unit), which was much faster than conventional manual methods. CONCLUSION: The proposed method enhances the accuracy and efficiency of abnormal tooth diagnosis for practitioners, while also facilitating early detection and treatment of dental caries to substantially lower patient costs. Additionally, it can enable rapid and objective evaluation of student performance in dental examinations.


Assuntos
Cárie Dentária , Humanos , Cárie Dentária/diagnóstico por imagem , Qualidade de Vida , Raios X , Benchmarking , Estudantes
5.
Adv Healthc Mater ; 13(2): e2302264, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37812564

RESUMO

Multi-modal combination therapy for tumor is expected to have superior therapeutic effect compared with monotherapy. In this study, a super-small bismuth/copper-gallic acid coordination polymer nanoparticle (BCN) protected by polyvinylpyrrolidone is designed, which is co-encapsulated with glucose oxidase (GOX) by phospholipid to obtain nanoprobe BCGN@L. It shows that BCN has an average size of 1.8 ± 0.7 nm, and photothermal conversion of BCGN@L is 31.35% for photothermal imaging and photothermal therapy (PTT). During the treatment process of 4T1 tumor-bearing nude mice, GOX catalyzes glucose in the tumor to generate gluconic acid and hydrogen peroxide (H2 O2 ), which reacts with copper ions (Cu2+ ) to produce toxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT) and new fresh oxygen (O2 ) to supply to GOX for further catalysis, preventing tumor hypoxia. These reactions increase glucose depletion for starvation therapy , decrease heat shock protein expression, and enhance tumor sensitivity to low-temperature PTT. The in vitro and in vivo results demonstrate that the combination of CDT with other treatments produces excellent tumor growth inhibition. Blood biochemistry and histology analysis suggests that the nanoprobe has negligible toxicity. All the positive results reveal that the nanoprobe can be a promising approach for incorporation into multi-modal anticancer therapy.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Cobre , Polímeros , Glucose Oxidase , Camundongos Nus , Neoplasias/tratamento farmacológico , Glucose , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Comput Struct Biotechnol J ; 21: 4361-4369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711184

RESUMO

Human liver tissue is composed of heterogeneous mixtures of different cell types and their cellular stoichiometry can provide information on hepatic physiology and disease progression. Deconvolution algorithms for the identification of cell types and their proportions have recently been developed for transcriptomic data. However, no method for the deconvolution of bulk proteomics data has been presented to date. Here, we show that proteomes, which usually contain less data than transcriptomes, can provide useful information for cell type deconvolution using different algorithms. We demonstrate that proteomes from defined mixtures of cell lines, isolated primary liver cells, and human liver biopsies can be deconvoluted with high accuracy. In contrast to transcriptome-based deconvolution, liver tissue proteomes also provided information about extracellular compartments. Using deconvolution of proteomics data from liver biopsies of 56 patients undergoing Roux-en-Y gastric bypass surgery we show that proportions of immune and stellate cells correlate with inflammatory markers and altered composition of extracellular matrix proteins characteristic of early-stage fibrosis. Our results thus demonstrate that proteome deconvolution can be used as a molecular microscope for investigations of the composition of cell types, extracellular compartments, and for exploring cell-type specific pathological events. We anticipate that these findings will allow the refinement of retrospective analyses of the growing number of proteome datasets from various liver disease states and pave the way for AI-supported clinical and preclinical diagnostics.

7.
Anal Chim Acta ; 1251: 341000, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925308

RESUMO

Ionic current rectification (ICR) phenomena conventionally occurs in nanopores which dimensions are comparable to the thickness of their electrical double layers. However, the microscale ICR in a micropore can also exist under some conditions. Here, the charged hydrogel filled conical micropore was constructed to realize microscale ICR. To better understand the micropore ICR, the influences of space charge density of the hydrogel, micropore geometry, the hydrogel filling length as well as the electrolyte concentration and pH were investigated. Furthermore, we developed a PEGDA-based hydrogel filled micropore sensing platform which sensing performance was enhanced due to the weakly charged PEGDA. The promyelocytic leukemia (PML)/retinoic acid receptor alpha (RARA) fusion genes and adenosine triphosphate (ATP) were respectively used as model analytes and the measured detection limits of 0.1 pM were achieved. The successful realization of microscale ICR in a homogenous and functional hydrogel filled micropore suggests that the fabrication, characterization and operation of ICR based devices can be more robust and facilitated for the wider applications.

8.
Food Chem ; 404(Pt A): 134552, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36272299

RESUMO

Immunochromatographic methods are acknowledged analytic assay to analyze capsaicinoids. Immunomagnetic solid-phase extraction (IMSPE) coupled with time-resolved fluorescence immunochromatographic assay (TRFICA) was proposed to quantify capsaicinoids in oil samples. Monoclonal antibodies (mAb) were synthesized with CNBr-Magnetic Crystarose 4B particles (CNBr-MCPs) under mild condition. The resultant CNBr-MCPs@mAb were conjugated high affinity mAbs on its surface, which was utilized to extract capsaicinoids from lipid matrices via antibodies-antigens capture. Under the optimized conditions, the whole IMSPE procedure was achieved within 15 min, and quantified by TRFICA strips. The results showed coefficients up to 0.9975 and the visual detection limit as low as 0.6 µg kg-1. The recoveries were ranging from 88.3 % to 112.4 % with the intra-day and inter-day precision lower than 11.6 %. Finally, the proposed IMSPE-TRFICA method was successfully used to detect capsaicinoids in lipid matrices, which has great utility to quantify capsaicinoids and adulteration detect vegetable oils.


Assuntos
Óleos de Plantas , Extração em Fase Sólida , Extração em Fase Sólida/métodos , Imunoensaio/métodos , Cromatografia de Afinidade/métodos , Óleos de Plantas/química , Contaminação de Alimentos/análise , Anticorpos Monoclonais
9.
Biosensors (Basel) ; 12(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551139

RESUMO

Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs' detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Humanos , Corantes Fluorescentes , MicroRNAs/análise , DNA , Coloração e Rotulagem , Endonucleases , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos
10.
Anal Chem ; 94(47): 16384-16392, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36377849

RESUMO

Matrix metalloproteinase (MMP) is closely correlated with tumorigenesis and progression. Establishing a low-cost, simple, rapid, and sensitive method for its detection is highly desired for the broad-spectrum screening of oral cancer. Herein, we combine the MMP-specific cleavage ability with magnetic separation technology and a commercial test strip to construct a sensitive biosensor to detect MMP-1 conveniently for the first time. The method involves two DNA probes, peptide-DNA1 and hCG-DNA2, where DNA1 and DNA2 are complementary sequences, and the peptide labeled with biotin can bind streptavidin-modified magnetic nanoparticles stably. The human chorionic gonadotropin (hCG) is the target of the pregnancy test strip. The cleavage reaction mediated by MMP-1 releases peptide-DNA1 and the hybridized hCG-DNA2 into the solution, and the hCG probe in the solution can develop color on the test strip for the determination of MMP-1 after magnetic separation. This method utilizes the high specificity of MMP-1's proteolytic cleavage and the high sensitivity of the test strip to the target probe, achieving a sensitive detection of MMP-1 with a visual detection limit of 65.5 pg/mL. The method shows better anti-interference and sensitivity than the enzyme-linked immunosorbent assay in the application of a biological sample matrix, suggesting its great potential for clinical diagnosis, especially for broad-spectrum oral cancer screening.


Assuntos
Técnicas Biossensoriais , Testes de Gravidez , Gravidez , Feminino , Humanos , Metaloproteinase 1 da Matriz , Saliva , Sondas de DNA , Técnicas Biossensoriais/métodos , Peptídeos , Limite de Detecção
11.
Anal Chem ; 94(36): 12391-12397, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36048720

RESUMO

Design of chemical probes with high specificity and responses are particularly intriguing. In this work, a fluorescent probe (M-OH-SO3) with dual-channel spectral responses toward human serum albumin (HSA) is presented. By employing dinitrobenzenesulfonate as a recognition site as well as a fluorescence quencher, probe M-OH-SO3 displayed weak fluorescence, which, nevertheless, exhibits extensive yellow (575 nm) and red (660 nm) fluorescence emissions toward HSA under excitations at 400 and 500 nm, respectively. Interestingly, M-OH-SO3 displayed the best performance toward HSA with distinctly higher selectivity than that of its counterparts M-SO3, M-H-SO3, and M-F-SO3, which were prepared simply by modulating the functional group at the ortho position of the dicyanoisophorone core. Molecular docking results revealed that M-OH-SO3 possesses the lowest binding energy among the tested derivatives and accordingly the strongest binding affinity. Probe M-OH-SO3 showed a good linear relationship toward HSA in a range of 0.5-18 µM with a limit of detection of 35 nM. Cell imaging results demonstrated that probe M-OH-SO3 could visualize the variation HSA levels in hepatocarcinoma cells. In addition, probe M-OH-SO3 could also be employed for the recognition of glutathione through the cleavage of the dinitrobenzenesulfonate group along with an enhancement of emission at 575 nm. The site-dependent properties inspired a novel paradigm for design of fluorescent probes with optimized selectivity and responses.


Assuntos
Corantes Fluorescentes , Albumina Sérica Humana , Corantes Fluorescentes/química , Glutationa , Humanos , Simulação de Acoplamento Molecular , Albumina Sérica Humana/química , Espectrometria de Fluorescência
12.
Cell Rep ; 40(12): 111385, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130503

RESUMO

The initial immune response to HIV determines transmission. However, due to technical limitations we still do not have a comparative map of early mucosal transmission events. By combining RNAscope, cyclic immunofluorescence, and image analysis tools, we quantify HIV transmission signatures in intact human colorectal explants within 2 h of topical exposure. We map HIV enrichment to mucosal dendritic cells (DCs) and submucosal macrophages, but not CD4+ T cells, the primary targets of downstream infection. HIV+ DCs accumulate near and within lymphoid aggregates, which act as early sanctuaries of high viral titers while facilitating HIV passage to the submucosa. Finally, HIV entry induces recruitment and clustering of target cells, facilitating DC- and macrophage-mediated HIV transfer and enhanced infection of CD4+ T cells. These data demonstrate a rapid response to HIV structured to maximize the likelihood of mucosal infection and provide a framework for in situ studies of host-pathogen interactions and immune-mediated pathologies.


Assuntos
Neoplasias Colorretais , Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Neoplasias Colorretais/patologia , Células Dendríticas , Interações Hospedeiro-Patógeno , Humanos
13.
Nat Commun ; 13(1): 4567, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931744

RESUMO

Inefficient tumour treatment approaches often cause fatal tumour metastases. Here, we report a biomimetic multifunctional nanoplatform explicitly engineered with a Co-based metal organic framework polydopamine heterostructure (MOF-PDA), anethole trithione (ADT), and a macrophage membrane. Co-MOF degradation in the tumour microenvironment releases Co2+, which results in the downregulation of HSP90 expression and the inhibition of cellular heat resistance, thereby improving the photothermal therapy effect of PDA. H2S secretion after the enzymatic hydrolysis of ADT leads to high-concentration gas therapy. Moreover, ADT changes the balance between nicotinamide adenine dinucleotide/flavin adenine dinucleotide (NADH/FAD) during tumour glycolysis. ATP synthesis is limited by NADH consumption, which triggers a certain degree of tumour growth inhibition and results in starvation therapy. Potentiated 2D/3D autofluorescence imaging of NADH/FAD is also achieved in liquid nitrogen and employed to efficiently monitor tumour therapy. The developed biomimetic nanoplatform provides an approach to treat orthotopic tumours and inhibit metastasis.


Assuntos
Materiais Biomiméticos , Hipotermia , Neoplasias , Biomimética , Metabolismo Energético , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , NAD/metabolismo , Neoplasias/patologia , Microambiente Tumoral
14.
Resour Policy ; 78: 102868, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35789809

RESUMO

This paper uses time-frequency analysis, including wavelet analysis and time-frequency domain causality, to evaluate the relationship between public attention to the COVID-19 pandemic, crude oil, and gold markets in the G7 countries over time and frequency. Empirical findings show that WTI oil lead gold returns during the COVID-19 outbreak, and vice versa when Omicron spread. The relationship between public attention to the COVID-19 and WTI oil/gold markets appears to be heterogeneous for G7 countries. European public attention caused by the COVID-19 outbreak has a strong impact on gold returns at the 32-64 day frequency, while public attention generated by Omicron has a significant effect on WTI oil returns at 4-128 day frequency. The public in the US and Canada is more concerned about the global stock and WTI oil markets slump than the COVID-19 pandemic. The Italian public seems to be the most sensitive to the EU's economic support plan. The heterogeneity of the public attention-oil/gold nexus in the G7 implies that portfolio diversification across markets and investment horizons may be extremely beneficial.

15.
J Colloid Interface Sci ; 621: 77-90, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35452931

RESUMO

Single treatment often faces the problem that it cannot completely eradicate tumor and inhibit the tumor metastasis. In order to overcome this shortcoming, multi-modal tumor treatment has attracted widespread attention. In the present article, based on ascorbyl palmitate (PA) and l-arginine (l-Arg), a multifunctional nanocarrier is designed for synergetic treatment of tumor with photothermal and nitric oxide (NO) gas therapy. Firstly, PA and l-Arg were self-assembled to form novel functional micelles, PL, with high biosafety using electrostatic interaction and hydrogen bonding. The functional micelles could self-catalyze to produce NO at the tumor site. Then, Ag2S quantum dots having fluorescence imaging and photothermal properties were encapsulated to obtain the nanocarrier, A@PL. The results show that A@PL had a hydrated size of around 78 nm and presented good stability within 30 d. Moreover, in vitro studies indicate that it was efficient with regards to NO self-generating capacity, whereas the photothermal conversion efficiency was as high as 34% under near-infrared light irradiation. The cytotoxicity results show that, when the concentration of A@PL was as high as 2 mM, the survival rate of 3 T3 cells was still 78.23%, proving that the probe has good safety characteristics. Fluorescence imaging results show that its maximum enrichment can be achieved at the tumor site after tail vein injection for 3 h, and out of the body after 24 h, indicating good internal circulation. The in vivo studies show that the rate of inhibition of tumor using the nanocarrier was as high as 98%, and almost overcame the problem of tumor recurrence caused by single treatment, thus presenting a significant tumor treatment effect. This new multifunctional nanocarrier with self-catalytic production of NO provides a new idea for the efficient treatment of tumors.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Micelas , Neoplasias/terapia , Óxido Nítrico , Imagem Óptica/métodos , Fototerapia/métodos
16.
J Appl Toxicol ; 42(9): 1524-1532, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35289950

RESUMO

Inhalation of beryllium and its compounds can cause lung injuries, resulting from inflammation and oxidative stress. Multivesicular bodies (MVB), such as exosomes, are membrane vesicles produced by early and late endosomes that mediate intercellular communications. However, the role of exosomes in beryllium toxicity has not been elucidated. This current study aimed to investigate the functional role of exosomes in lung injury resulting from beryllium sulfate (BeSO4 ). Here, Sprague-Dawley (SD) rats were exposed to 4, 8, and 12 mg/kg BeSO4 by nonexposed intratracheal instillation. Murine macrophage (RAW 264.7) cells were pretreated with 50 nmol/L rapamycin (an mTOR signaling pathway inhibitor) for 30 min and then cultured for 24 h with 100 µg/mL exosomes, which had been previously isolated from the serum of 12 mg/kg BeSO4 -treated SD rats. Compared with those of the controls, exposure to BeSO4 in vivo increased LDH activity, elevated levels of inflammatory cytokines (IL-10, TNF-α, and IFN-γ) alongside inflammation-related proteins expression (COX-2 and iNOS), and enhanced secretion of exosomes from the SD rat's serum. Moreover, the BeSO4 -Exos-induced upregulation of LDH activity and inflammatory responses in RAW 264.7 cells can be alleviated following pretreatment with rapamycin. Collectively, these results suggest that serum exosomes play an important role in pulmonary inflammation induced by BeSO4 in RAW 264.7 cells via the mTOR pathway.


Assuntos
Berílio , Exossomos , Animais , Berílio/farmacologia , Berílio/toxicidade , Exossomos/metabolismo , Inflamação/induzido quimicamente , Macrófagos , Camundongos , Ratos , Ratos Sprague-Dawley , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
J Mater Chem B ; 10(15): 2952-2962, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35316322

RESUMO

CdTe@CdS core-shell quantum dots with different particle sizes are synthesized by an aqueous method, and coating them with a CdS shell layer improves the quantum yield (36% → 59%) and fluorescence stability (37% → 77%) of CdTe@CdS quantum dots. When the KCl concentration (mass fraction) in the system is 15%, the CdTe@CdS quantum dot dispersion system remains in the liquid state at -20 °C, and the low temperature increases the fluorescence intensity. A QD-Ab probe is obtained after CdTe@CdS quantum dots are coupled with IgG; the circular dichroism shows that the IgG protein structure is not destroyed, while capillary electrophoresis, agarose gel electrophoresis and flow cytometry verify the conjugation efficiency. With rabbit anti-mouse EMR1 antibody as the primary antibody and QD-Ab as the secondary antibody, the hepatic macrophages in liver frozen sections are fluorescently labeled at -20 °C, and it is found that they are radially distributed in hepatic sinusoids with specific and highly efficient labeling; these results are verified by H&E staining and TEM. This technology can provide important technical support for in-depth understanding of the distribution of liver immune cells in the liver, and it can further provide a scientific basis to understand the relationship between the liver structure and function and pathological changes.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Animais , Compostos de Cádmio/química , Congelamento , Secções Congeladas , Imunoglobulina G , Fígado , Macrófagos , Camundongos , Pontos Quânticos/química , Coelhos , Sulfetos/química , Telúrio/química
18.
Acta Pharmacol Sin ; 43(5): 1103-1119, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35217817

RESUMO

Nonalcoholic fatty liver disease (NAFLD), a series of liver metabolic disorders manifested by lipid accumulation within hepatocytes, has become the primary cause of chronic liver diseases worldwide. About 20%-30% of NAFLD patients advance to nonalcoholic steatohepatitis (NASH), along with cell death, inflammation response and fibrogenesis. The pathogenesis of NASH is complex and its development is strongly related to multiple metabolic disorders (e.g. obesity, type 2 diabetes and cardiovascular diseases). The clinical outcomes include liver failure and hepatocellular cancer. There is no FDA-approved NASH drug so far, and thus effective therapeutics are urgently needed. Bile acids are synthesized in hepatocytes, transported into the intestine, metabolized by gut bacteria and recirculated back to the liver by the enterohepatic system. They exert pleiotropic roles in the absorption of fats and regulation of metabolism. Studies on the relevance of bile acid disturbance with NASH render it as an etiological factor in NASH pathogenesis. Recent findings on the functional identification of bile acid receptors have led to a further understanding of the pathophysiology of NASH such as metabolic dysregulation and inflammation, and bile acid receptors are recognized as attractive targets for NASH treatment. In this review, we summarize the current knowledge on the role of bile acids and the receptors in the development of NAFLD and NASH, especially the functions of farnesoid X receptor (FXR) in different tissues including liver and intestine. The progress in the development of bile acid and its receptors-based drugs for the treatment of NASH including bile acid analogs and non-bile acid modulators on bile acid metabolism is also discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Ácidos e Sais Biliares/metabolismo , Biologia , Diabetes Mellitus Tipo 2/metabolismo , Descoberta de Drogas , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
19.
J Appl Toxicol ; 42(2): 230-243, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34091916

RESUMO

Beryllium and its compounds are systemic toxicants that are widely applied in many industries. Hydrogen sulfide has been found to protect cells. The present study aimed to determine the protective mechanisms involved in hydrogen sulfide treatment of 16HBE cells following beryllium sulfate-induced injury. 16HBE cells were treated with beryllium sulfate doses ranging between 0 and 300 µM BeSO4 . Additionally, 16HBE cells were subjected to pretreatment with either a 300 µM dose of sodium hydrosulfide (a hydrogen sulfide donor) or 10 mM DL-propargylglycine (a cystathionine-γ-lyase inhibitor) for 6 hr before then being treated with 150 µM beryllium sulfate for 48 hr. This study illustrates that beryllium sulfate induces a reduction in cell viability, increases lactate dehydrogenase (LDH) release, and increases cellular apoptosis and autophagy in 16HBE cells. Interestingly, pretreating 16HBE cells with sodium hydrosulfide significantly reduced the beryllium sulfate-induced apoptosis and autophagy. Moreover, it increased the mitochondrial membrane potential and alleviated the G2/M-phase cell cycle arrest. However, pretreatment with 10 mM DL-propargylglycine promoted the opposite effects. PI3K/Akt/mTOR and Nrf2/ARE signaling pathways are also activated following pretreatment with sodium hydrosulfide. These results indicate the protection provided by hydrogen sulfide in 16HBE cells against beryllium sulfate-induced injury is associated with the inhibition of apoptosis and autophagy through the activation of the PI3K/Akt/mTOR and Nrf2/ARE signaling pathways. Therefore, hydrogen sulfide has the potential to be a promising candidate in the treatment against beryllium disease.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Berílio/toxicidade , Sulfeto de Hidrogênio/farmacologia , Substâncias Protetoras/farmacologia , Brônquios , Linhagem Celular , Células Epiteliais , Humanos
20.
Acta Biomater ; 140: 547-560, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923095

RESUMO

A nanoplatform based on Ag2S quantum dots (QDs) and tellurium nanorods (TeNRs) was developed for combined chemo-photothermal therapy guided by H2O2-activated near-infrared (NIR)-II fluorescence imaging. Polypeptide PC10AGRD-modified TeNRs and Ag2S QDs were co-encapsulated in 4T1 cell membrane to prepare a nanoplatform (CCM@AT). Ag2S QDs and TeNRs in the CCM@AT were used as a fluorescence probe and photosensitizer, and a chemotherapeutic prodrug and quenching agent to quench the fluorescence of Ag2S QDs, respectively. After the CCM@AT was specifically targeted to the tumor site, the TeNRs were dissolved by the high concentration of H2O2 at the tumor site to light up the fluorescence of Ag2S QDs for NIR-II fluorescence imaging. In addition, the generated toxic TeO66- molecules decreased ATP production by selective cancer chemotherapy, which is beneficial for photothermal therapy. The elevated temperature due to photothermal therapy in turn promoted the chemical reaction in chemotherapy. In vitro and in vivo toxicity results showed that the CCM@AT possesses high biocompatibility. Compared to single photothermal therapy and chemotherapy, the synergistic chemo-photothermal therapy can effectively suppress the growth of 4T1 tumor. This all-in-one nanoplatform provides a boulevard for the combination therapy of tumors guided by NIR-II fluorescence imaging. STATEMENT OF SIGNIFICANCE: NIR-II fluorescence imaging shows the characteristics of low tissue absorption, reflection, and scattering, which can greatly reduce the influence of autofluorescence in vivo. However, the non-negligible effect of autofluorescence is still observed in fluorescence imaging in vivo. Therefore, there is an urgent need to develop a strategy of controlled release of fluorescence for accurate imaging and tumor therapy. Here, Ag2S quantum dots (QDs) with NIR-II fluorescence emission and good photothermal conversion efficiency are used as a fluorescence probe and photosensitizer, and tellurium nanorods (TeNRs) are used as a chemotherapeutic prodrug and quenching agent to quench the fluorescence of Ag2S QDs. This multiple nanoplatform provides an inspiration for the combination therapy of tumor guided by NIR-II fluorescence imaging.


Assuntos
Nanopartículas , Nanotubos , Pontos Quânticos , Peróxido de Hidrogênio , Nanopartículas/química , Imagem Óptica/métodos , Fototerapia/métodos , Terapia Fototérmica , Pontos Quânticos/química , Telúrio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA