Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38972621

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), which are widely present in incompletely combusted air particulate matter <2.5 µm (PM2.5), tobacco and other organic materials, can enter the human body through various routes and are a class of environmental pollutants with neurotoxic effects. PAHs exposure can lead to abnormal development of the nervous system and neurobehavioral abnormalities in animals, including adverse effects on the nervous system of children and adults, such as a reduced learning ability, intellectual decline, and neural tube defects. After PAHs enter cells of the nervous system, they eventually lead to nervous system damage through mechanisms such as oxidative stress, DNA methylation and demethylation, and mitochondrial autophagy, potentially leading to a series of nervous system diseases, such as Alzheimer's disease. Therefore, preventing and treating neurological diseases caused by PAHs exposure are particularly important. From the perspective of the in vitro and in vivo effects of PAHs exposure, as well as its effects on human neurodevelopment, this paper reviews the toxic mechanisms of action of PAHs and the corresponding prevention and treatment methods to provide a relevant theoretical basis for preventing the neurotoxicity caused by PAHs, thereby reducing the incidence of diseases related to the nervous system and protecting human health.


Assuntos
Poluentes Ambientais , Síndromes Neurotóxicas , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Humanos , Animais , Poluentes Ambientais/toxicidade , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Exposição Ambiental/efeitos adversos
2.
Genes Environ ; 45(1): 21, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391844

RESUMO

Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.

3.
Oncogenesis ; 10(1): 3, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419967

RESUMO

Mammalian SWI/SNF complex is a key chromatin remodeler that reshapes nucleosomes and regulates DNA accessibility. Mutations in SWI/SNF subunits are found in a broad spectrum of human cancers; however, the mechanisms of how these aberrations of SWI/SNF complex would impact tumorigenesis and cancer therapeutics remain to be elucidated. Studies have demonstrated that immune checkpoint blockade (ICB) therapy is promising in cancer treatment. Nevertheless, suitable biomarkers that reliably predict the clinical response to ICB are still lacking. Emerging evidence has suggested that SWI/SNF components play novel roles in the regulation of anti-tumor immunity, and SWI/SNF deficiency can be therapeutically targeted by ICB. These findings manifest the prominence of the SWI/SNF complex as a stratification biomarker that predicts treatment (therapeutic) response to ICB. In this review, we summarize the recent advances in ICB therapy by harnessing the cancer-specific vulnerability elicited by SWI/SNF deficiency. We provide novel insights into a comprehensive understanding of the underlying mechanisms by which SWI/SNF functions as a modulator of anti-tumor immunity.

4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 28(6): 1998-2003, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33283732

RESUMO

OBJECTIVE: To evaluate the proformance of multiplex PCR and capillary electrophoresis(MPCE) in the detection of JAK2V617F and CALR mutation in myeloproliferative neoplasms(MPN). METHODS: The specificity primers of JAK2617F gene mutation and the primers of CALR gene were designed at the same time. The JAK2V617F and CALR gene primers were labeled with Cy5 fluorescence, all the primers were mixed in one tube for multiplex PCR and the PCR prodcuts were analysised by capillary electrophoresis. Then detection limit and sensitivity of MPCE were evaluated, and compared with comercial diagnostic kit. RESULTS: JAK2V617F and CALR gene mutations could be detect by MPCE in one PCR test. JAK2V617F mutation could be detected at 0.01 ng genomic DNA, double positive JAK2V617F and CLAR gene mutations could be detected at 0.1 ng genomic DNA, at least 0.1% JAK2V617F positive mutation could be detected. The consistency between MPCE and commercial diagnostic gene mutation kit was 100%. CONCLUSION: It is developed that a new gene mutation detection method of JAK2 V617F and CLAR gene based on MPCE in our experiment and it can be used as a new reagent for molecular diagnosis of MPN patients.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Calreticulina/genética , Eletroforese Capilar , Humanos , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Reação em Cadeia da Polimerase
5.
Biomed Pharmacother ; 96: 757-767, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29049979

RESUMO

Direct attacks on tumour cells with chemotherapeutic drugs have the drawbacks of accelerating tumour metastasis and inducing tumour stem cell phenotypes. Inhibition of tumour-associated fibroblasts, which provide nourishment and support to tumour cells, is a novel and promising anti-tumour strategy. However, effective drugs against tumour-associated fibroblasts are currently lacking. In the present study, we explored the possibility of inhibiting the pathological functions of tumour-associated fibroblasts with triptonide. Paired gastric normal fibroblasts (GNFs) and gastric cancer-associated fibroblasts (GCAFs) were obtained from resected tissues. GCAFs showed higher capacities to induce colony formation, migration, and invasion of gastric cancer cells than GNFs. Triptonide treatment strongly inhibited the colony formation-, migration-, and invasion-promoting capacities of GCAFs. The expression of microRNA-301a was higher and that of microRNA-149 was lower in GCAFs than in GNFs. Triptonide treatment significantly down-regulated microRNA-301a expression and up-regulated microRNA-149 expression in GCAFs. Re-establishment of microRNA expression balance increased the production and secretion of tissue inhibitor of metalloproteinase 2, a tumour suppressive factor, and suppressed the production and secretion of IL-6, an oncogenic factor, in GCAFs. Moreover, triptonide treatment abolished the ability of GCAFs to induce epithelial-mesenchymal transition in gastric cancer cells. These results indicate that triptonide inhibits the malignancy-promoting capacity of GCAFs by correcting abnormalities in microRNA expression. Thus, triptonide is a promisingly therapeutic agent for gastric cancer treatment, and traditional herbs may be a valuable source for developing new drugs that can regulate the tumour microenvironment.


Assuntos
Fibroblastos/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Estômago/efeitos dos fármacos , Triterpenos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , MicroRNAs/metabolismo , Invasividade Neoplásica/patologia , Oncogenes/efeitos dos fármacos , Estômago/patologia , Neoplasias Gástricas/patologia , Regulação para Cima/efeitos dos fármacos
6.
PLoS One ; 9(4): e93583, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699686

RESUMO

Somatic cell nuclear transfer is used to generate genetic models for research and new, genetically modified livestock varieties. Goat fetal fibroblast cells (gFFCs) are the predominant nuclear donors in Cashmere goat transgenic cloning, but have disadvantages. We evaluated the potential of goat adipose-derived mesenchymal stem cells (gADSCs) and goat skeletal muscle-derived satellite cells (gMDSCs) for somatic cell nuclear transfer, evaluating their proliferation, pluripotency, transfection efficiency and capacity to support full term development of embryos after additive gene transfer or homologous recombination. gADSCs and gMDSCs were isolated by enzyme digestion and differentiated into neurocytes, myotube cells and insulin-producing cells. Neuron-specific enolase, fast muscle myosin and insulin expression were determined by immunohistochemistry. Following somatic cell nuclear transfer with donor cells derived from gADSCs, gMDSCs and gFFCs, transfection and cloning efficiencies were compared. Red fluorescent protein levels were determined by quantitative PCR and western blotting. 5-Methylcytosine, H4K5, H4K12 and H3K18 were determined immunohistochemically. gADSCs and gMDSCs were maintained in culture for up to 65 passages, whereas gFFCs could be passaged barely more than 15 times. gADSCs and gMDSCs had higher fluorescent colony forming efficiency and greater convergence (20%) and cleavage (10%) rates than gFFCs, and exhibited differing H4K5 histone modification patterns after somatic cell nuclear transfer and in vitro cultivation. After transfection with a pDsRed2-1 expression plasmid, the integrated exogenous genes did not influence the pluripotency of gADSCs-pDsRed2-1 or gMDSCs-pDsRed2-1. DsRed2 mRNA expression by cloned embryos derived from gADSCs-pDsRed2-1 or gMDSCs-pDsRed2-1 was more than twice that of gFFCs-pDsRed2-1 embryos (P<0.01). Pregnancy rates of gADSCs-pDsRed2-1 and gMDSCs-pDsRed2-1 recipients were higher than those of gFFCs-pDsRed2-1 recipients (P<0.01). With their high proliferative capacity and transfection efficiency, gADSCs and gMDSCs are a valuable cell source for breeding new, genetically modified varieties of livestock by somatic cell nuclear transfer.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/citologia , Técnicas de Transferência Nuclear/veterinária , Células Satélites de Músculo Esquelético/citologia , Animais , Animais Geneticamente Modificados , Apoptose , Sequência de Bases , Diferenciação Celular , Primers do DNA , Cabras , Insulina/biossíntese , Reação em Cadeia da Polimerase em Tempo Real
7.
Cell Biol Int ; 36(6): 579-87, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22233500

RESUMO

Skeletal muscle satellite cells are adult muscle-derived stem cells receiving increasing attention. Sheep satellite cells have a greater similarity to human satellite cells with regard to metabolism, life span, proliferation and differentiation, than satellite cells of the rat and mouse. We have used 2-step enzymatic digestion and differential adhesion methods to isolate and purify sheep skeletal muscle satellite cells, identified the cells and induced differentiation to examine their pluripotency. The most efficient method for the isolation of sheep skeletal muscle satellite cells was the type I collagenase and trypsin 2-step digestion method, with the best conditions for in vitro culture being in medium containing 20% FBS+10% horse serum. Immunofluorescence staining showed that satellite cells expressed Desmin, α-Sarcomeric Actinin, MyoD1, Myf5 and PAX7. After myogenic induction, multinucleated myotubes formed, as indicated by the expression of MyoG and fast muscle myosin. After osteogenic induction, cells expressed Osteocalcin, with Alizarin Red and ALP (alkaline phosphatase) staining results both being positive. After adipogenic induction, cells expressed PPARγ2 (peroxisome-proliferator-activated receptor γ2) and clear lipid droplets were present around the cells, with Oil Red-O staining giving a positive result. In summary, a successful system has been established for the isolation, purification and identification of sheep skeletal muscle satellite cells.


Assuntos
Diferenciação Celular , Células Satélites de Músculo Esquelético/fisiologia , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Técnicas de Cultura de Células , Proliferação de Células , Forma Celular , Células Cultivadas , Meios de Cultura , Cariótipo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA