Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Rep ; 13(1): 10105, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344615

RESUMO

The aim of this study was to evaluate the effect of Lactobacillus delbrueckii subsp. lactis (L.del) on vaginal microbiota (VM) dysbiosis and vaginal radiation injury in gynecologic cancer patients. The inhibitory effects of L.del on cervical cancer cells were also studied in vitro. Gynecologic cancer patients receiving radiotherapy were randomized into control and L.del intervention groups. The control group received radiotherapy, while the intervention group received radiotherapy and L.del intervention (1 capsule/day placed into the deep vagina from the first day of radiotherapy until the end of treatment). Vaginal swab samples were collected on the first day pre-treatment and the last day post-treatment. DNA from 54 patients was extracted and assessed by the 16S rRNA sequencing method. Radiotherapy resulted in vaginal microbiome dysbiosis characterized by increased phylogenetic diversity and increased abundance of Brevundimonas, Streptococcus and Prevotella, but a decreased abundance of Lactobacillus. Level 2 vaginal radiation injury was positively associated with the abundance of Brevundimonas and gram-negative non-fermenting bacteria. Administration of L.del attenuated the reduction of Lactobacillus while also inhibiting the abundance of Streptococcus and Prevotella, thereby ameliorating radiotherapy-related vaginal microbiota dysbiosis. CLD inhibited the in vitro proliferation of SiHa cells by altering the expression of BCL2, HPV16-E6, HPV16-E7, IL6, MAP7, BAX, Caspase-3, Caspase-9 and LTF. In conclusion, L. del application can alleviate radiation-induced vaginal dysbiosis and restore Lactobacillus dominance of the vaginal microbiome. Moreover, CLD was found to inhibit cell growth and promote the apoptosis of SiHa cells in vitro. The registration number for this clinical trial is ChiCTR1900021784.


Assuntos
Disbiose , Neoplasias , Feminino , Humanos , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Vagina/microbiologia , Lactobacillus/genética , Streptococcus/genética
2.
Cell Death Dis ; 12(12): 1094, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34799549

RESUMO

Vaginal dysbiosis often occurs in patients with cervical cancer. The fucosylation of mucosal epithelial cells is closely related to microbial colonization, and play an important role in protecting the vaginal mucosal epithelial cells. However, no reports on the relationship between vaginal dysbiosis and abnormal mucosal epithelial cell fucosylation, and their roles in the occurrence and development of cervical cancer are unavailable. Here we report that core fucosylation levels were significantly lower in the serum, exfoliated cervical cells and tumor tissue of cervical cancer patients. Core fucosyltransferase gene (Fut8) knockout promoted the proliferation and migration of cervical cancer cells. In patients with cervical cancer, the vaginal dysbiosis, and the abundance of Lactobacillus, especially L. iners, was significantly reduced. Meanwhile, the abundance of L.iners was positively correlated with core fucosylation levels. The L. iners metabolite lactate can activate the Wnt pathway through the lactate-Gpr81 complex, which increases the level of core fucosylation in epidermal cells, inhibiting the proliferation and migration of cervical cancer cells, and have application prospects in regulating the vaginal microecology and preventing cervical cancer.


Assuntos
Células Epiteliais/metabolismo , Fucosiltransferases/metabolismo , Lactobacillus/patogenicidade , Neoplasias do Colo do Útero/microbiologia , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Microambiente Tumoral
3.
Food Nutr Res ; 652021.
Artigo em Inglês | MEDLINE | ID: mdl-34349613

RESUMO

BACKGROUND: Omega-3 polyunsaturated fatty acids (PUFAs) play beneficial roles in metabolism and health. Little is known about the effects of different doses of omega-3 PUFAs on gut microbiota. OBJECTIVE: In this study, we focus on the effects of different doses of omega-3 PUFAs on gut microbiota and immunity. DESIGN: BALB/c mice was first treated with ceftriaxone sodium for 7 days, and then they received saline or different doses of omega-3 PUFAs (30, 60 and 90 mg omega-3 PUFAs) via daily gavage for 21 days. Alterations of cecum microbiota; the tight junction proteins, zonula occludens 3 (ZO3) and occludin, in the ileal wall; serum lipopolysaccharide (LPS); Interleukin-10 (IL-10), interleukin-1ß (IL-1ß), and Tumour Necrosis Factor α (TNF-α) ; mucus SIgA levels were measured. RESULTS: Compared with the ceftriaxone sodium administration group, significant increases in bacterial richness and diversity were observed in the 60- and 90-mg omega-3 PUFA groups, while only a slight increase was observed in the 30-mg omega-3 PUFA group. A higher percentage of several genera, including Lactobacillus, Helicobacter, and Ruminococcus, and a lower percentage of Bacteroides, Clostridium, and Prevotella were observed in the 60- and 90-mg omega-3 PUFA groups when compared with those in the 30-mg group. The expression of ZO3 and occludin proteins increased in 60- and 90-mg omega-3 PUFA groups compared with the natural recovery group. The mucus SIgA and serum IL-10 levels were increased, and serum levels of LPS, IL-1ß, and TNF-α were decreased in the 60- and 90-mg omega-3 PUFA groups when compared with those in the ceftriaxone sodium-treated group. CONCLUSION: Different doses of omega-3 PUFAs have different therapeutic effects on the intestinal microbiota. The 60- and 90-mg omega-3 PUFA supplementation had better recovery effects on the gut microbiota and immunity than those of the 30 mg omega-3 PUFAs supplementation.

4.
Nutrition ; 33: 96-104, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27427511

RESUMO

OBJECTIVE: The use of probiotics to alleviate chemotherapy-induced intestinal mucositis is supported by clinical consensus. However, no studies to date, to our knowledge, have systematically analyzed the effects of a probiotic mixture on chemotherapy-induced mucositis or assessed changes in the intestinal microbiota after probiotic treatment. The aim of this study was to report the effects of a probiotic mixture, DM#1, on intestinal mucositis and dysbiosis of rats treated with 5-fluorouracil (5-FU). METHODS: Twenty-eight male Sprague Dawley rats weighing 180 to 220 g were randomly divided into four groups: control, 5-FU, probiotic high (PH), and probiotic low (PL). Except for the control group, all other groups received intraperitoneal injections of 5-FU for 5 d, and the PH and PL groups received DM#1 intragastrically (1 × 109 or 1 × 108 colony-forming units/kg, respectively) for 8 d. One day after the last administration, rats were sacrificed and the ilea were removed for histopathologic assessment and evaluation of permeability, myeloperoxidase activity, levels of cytokines (interleukin [IL]-4, IL-6, tumor necrosis factor [TNF]-α), and mRNA of toll-like receptors (TLR; TLR2, TLR4, and TLR9). Additionally, intestinal microbiota profiles were analyzed by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis and quantitative real-time PCR. RESULTS: Treatment with DM#1 ameliorated 5-FU-induced intestinal mucosal injury in rats, possibly by reducing proinflammatory cytokine levels and neutrophil infiltration. The increased intestinal permeability caused by 5-FU was ameliorated. These results were closely associated with the reestablishment of intestinal microbial homeostasis and alteration of the TLR2/TLR4 signaling pathway. CONCLUSIONS: Administration of the probiotic mixture DM#1 ameliorated 5-FU-induced intestinal mucositis and dysbiosis in rats.


Assuntos
Citocinas/metabolismo , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Íleo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosite/tratamento farmacológico , Probióticos/uso terapêutico , Animais , Fluoruracila , Íleo/metabolismo , Íleo/patologia , Inflamação/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Mucosite/induzido quimicamente , Mucosite/metabolismo , Infiltração de Neutrófilos , Permeabilidade , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like , Fator de Necrose Tumoral alfa/metabolismo
5.
Biochem Biophys Res Commun ; 478(1): 221-226, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27444385

RESUMO

The regulatory mechanism of tautomycetin (TMC) biosynthesis remains largely unknown, although it has been of great interest to the pharmaceutical industry. Our previous study showed that intracellular adenosine triphosphate (inATP) level is negatively correlated with secondary metabolite biosynthesis in various Streptomyces spp. In this study, by exogenous treatment of ATP, we also found a negative correlation between TMC biosynthesis and inATP level in Streptomyces griseochromogenes (S. griseochromogenes). However, the underlying mechanism remains unclear. TmcN, a pathway-specific transcriptional regulator of TMC biosynthetic genes, was previously revealed as a large ATP-binding LuxR (LAL) family protein. The predicted amino acid sequence of TmcN shows highly conserved Walker A and B binding motifs, which suggest an ATPase function of TmcN. We therefore hypothesized that the ATPase domain of TmcN may play a role in sensing endogenous pool of ATP, and is thus involved in the ATP regulation of TMC biosynthesis. To test the hypothesis, we first explored the key residue that affects the ATPase activity of TmcN by amino acid sequence alignment and structural simulation. After that, we disrupted tmcN gene in S. griseochromogenes, and the tmcN or site-direct-mutated tmcN were re-introduced to get the complementary and ATPase domain disrupted strains. The transcription level of tmcN, TMC yield, and inATP, as well as the effect of ATP on TMC production of different mutants were evaluated. Deletion of tmcN or site-direct mutation of ATPase domain of TmcN in S. griseochromogenes significantly reduced the TMC production, and it was not affected by exogenous ATP treatment. In addition, a relatively high level of inATP was detected in tmcN deletion and site-direct mutation strains. Our results here suggested that TmcN, especially its ATPase domain, is involved in consuming of endogenous ATP pool and thus plays pivotal role in connecting the primary and secondary metabolite in S. griseochromogenes.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Lipídeos/biossíntese , Streptomyces griseus/metabolismo , Fatores de Transcrição/metabolismo , Furanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-25395713

RESUMO

BACKGROUND: To observe the inhibition effects of the Buthus matensii Karsch (BmK) scorpion venom extracts on the growth of human breast cancer MCF-7 cells, and to explore its mechanisms. METHODS: Two common tumor cells (SMMC7721, MCF-7) were examined for the one which wasmore sensitivity to scorpion venom by MTT method. Cell cycle was determined by flow cytometry. Immunocytochemistry was applied to detect apoptosis-related protein Caspase-3 and Bcl-2 levels, while the expression of cell cycle-related protein Cyclin D1 was shown by Western blotting. RESULTS: Our data indicated that MCF-7 was the more sensitive cell line to scorpion venom. The extracts of scorpion venom could inhibit the growth and proliferation of MCF-7 cells. Furthermore, the extract of scorpion venom induced apoptosis through Caspase-3 up-regulation while Bcl-2 down-regulation in MCF-7 cells. In addition, the extracts of scorpion venom blocked the cells from G0/G1 phase to S phase and decreased cell cycle-related protein Cyclin D1 level after drug intervention compared with the negative control group. CONCLUSIONS: These results showed that the BmK scorpion venom extracts could inhibit the growth of MCF-7 cells by inducing apoptosis and blocking cell cycle in G0/G1 phase. The BmK scorpion venom extracts will be very valuable for the treatment of breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Venenos de Escorpião/uso terapêutico , Escorpiões , Animais , Antineoplásicos/farmacologia , Apoptose , Produtos Biológicos/farmacologia , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Regulação para Baixo , Feminino , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Venenos de Escorpião/farmacologia
7.
Oncol Lett ; 8(4): 1581-1584, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25202371

RESUMO

Peptides from scorpion venom have been previously studied for use in the prevention and treatment of various types of cancer in folk medicine. The present study investigated the anti-proliferative effects and mechanisms of the low molecular weight (~3 kDa) BmK scorpion venom peptides (LMWSVP) on human hepatoma (SMMC 7721) and cervical carcinoma (HeLa) cells. The data indicated that LMWSVP inhibited the growth of SMMC 7721 cells, but had no effect on the growth of HeLa cells. SMMC 7721 cells were more sensitive, with a higher affinity, to LMWSVP as compared with HeLa cells. In addition, LMWSVP induced apoptosis of SMMC 7721 cells by upregulating the expression of caspase-3 and downregulating the expression of Bcl-2. These data provide an experimental basis for further purification and application of LMWSVP for use as an anti-tumor drug in clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA