Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 102: 105066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531173

RESUMO

BACKGROUND: Focused ultrasound (FUS) combined with microbubbles is a promising technique for noninvasive, reversible, and spatially targeted blood-brain barrier opening, with clinical trials currently ongoing. Despite the fast development of this technology, there is a lack of established quality assurance (QA) strategies to ensure procedure consistency and safety. To address this challenge, this study presents the development and clinical evaluation of a passive acoustic detection-based QA protocol for FUS-induced blood-brain barrier opening (FUS-BBBO) procedure. METHODS: Ten glioma patients were recruited to a clinical trial for evaluating a neuronavigation-guided FUS device. An acoustic sensor was incorporated at the center of the FUS device to passively capture acoustic signals for accomplishing three QA functions: FUS device QA to ensure the device functions consistently, acoustic coupling QA to detect air bubbles trapped in the acoustic coupling gel and water bladder of the transducer, and FUS procedure QA to evaluate the consistency of the treatment procedure. FINDINGS: The FUS device passed the device QA in 9/10 patient studies. 4/9 cases failed acoustic coupling QA on the first try. The acoustic coupling procedure was repeatedly performed until it passed QA in 3/4 cases. One case failed acoustic coupling QA due to time constraints. Realtime passive cavitation monitoring was performed for FUS procedure QA, which captured variations in FUS-induced microbubble cavitation dynamics among patients. INTERPRETATION: This study demonstrated that the proposed passive acoustic detection could be integrated with a clinical FUS system for the QA of the FUS-BBBO procedure. FUNDING: National Institutes of Health R01CA276174, R01MH116981, UG3MH126861, R01EB027223, R01EB030102, and R01NS128461.


Assuntos
Barreira Hematoencefálica , Terapia por Ultrassom , Humanos , Ultrassonografia , Acústica , Terapia por Ultrassom/métodos , Microbolhas , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
2.
Pharmaceutics ; 15(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896238

RESUMO

Immune checkpoint inhibitor (ICI) therapy has revolutionized cancer treatment by leveraging the body's immune system to combat cancer cells. However, its effectiveness in brain cancer is hindered by the blood-brain barrier (BBB), impeding the delivery of ICIs to brain tumor cells. This study aimed to assess the safety and feasibility of using focused ultrasound combined with microbubble-mediated BBB opening (FUS-BBBO) to facilitate trans-BBB delivery of an ICI, anti-programmed cell death-ligand 1 antibody (aPD-L1) to the brain of a large animal model. In a porcine model, FUS sonication of targeted brain regions was performed after intravenous microbubble injection, which was followed by intravenous administration of aPD-L1 labeled with a near-infrared fluorescent dye. The permeability of the BBB was evaluated using contrast-enhanced MRI in vivo, while fluorescence imaging and histological analysis were conducted on ex vivo pig brains. Results showed a significant 4.8-fold increase in MRI contrast-enhancement volume in FUS-targeted regions compared to nontargeted regions. FUS sonication enhanced aPD-L1 delivery by an average of 2.1-fold, according to fluorescence imaging. In vivo MRI and ex vivo staining revealed that the procedure did not cause significant acute tissue damage. These findings demonstrate that FUS-BBBO offers a noninvasive, localized, and safe delivery approach for ICI delivery in a large animal model, showcasing its potential for clinical translation.

3.
NPJ Precis Oncol ; 7(1): 92, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717084

RESUMO

Sonobiopsy is an emerging technology that combines focused ultrasound (FUS) with microbubbles to enrich circulating brain disease-specific biomarkers for noninvasive molecular diagnosis of brain diseases. Here, we report the first-in-human prospective trial of sonobiopsy in high-grade glioma patients to evaluate its feasibility and safety in enriching plasma circulating tumor biomarkers. A nimble FUS device integrated with a clinical neuronavigation system was used to perform sonobiopsy following an established clinical workflow for neuronavigation. Analysis of blood samples collected before and after FUS sonication showed that sonobiopsy enriched plasma circulating tumor DNA (ctDNA), including a maximum increase of 1.6-fold for the mononucleosome cell-free DNA (cfDNA) fragments (120-280 bp), 1.9-fold for the patient-specific tumor variant ctDNA level, and 5.6-fold for the TERT mutation ctDNA level. Histological analysis of surgically resected tumors confirmed the safety of the procedure. Transcriptome analysis of sonicated and nonsonicated tumor tissues found that FUS sonication modulated cell physical structure-related genes. Only 2 out of 17,982 total detected genes related to the immune pathways were upregulated. These feasibility and safety data support the continued investigation of sonobiopsy for noninvasive molecular diagnosis of brain diseases.

4.
medRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993173

RESUMO

Sonobiopsy is an emerging technology that combines focused ultrasound (FUS) with microbubbles to enrich circulating brain disease-specific biomarkers for noninvasive molecular diagnosis of brain diseases. Here, we report the first-in-human prospective trial of sonobiopsy in glioblastoma patients to evaluate its feasibility and safety in enriching circulating tumor biomarkers. A nimble FUS device integrated with a clinical neuronavigation system was used to perform sonobiopsy following an established clinical workflow for neuronavigation. Analysis of blood samples collected before and after FUS sonication showed enhanced plasma circulating tumor biomarker levels. Histological analysis of surgically resected tumors confirmed the safety of the procedure. Transcriptome analysis of sonicated and unsonicated tumor tissues found that FUS sonication modulated cell physical structure-related genes but evoked minimal inflammatory response. These feasibility and safety data support the continued investigation of sonobiopsy for noninvasive molecular diagnosis of brain diseases.

5.
Radiology ; 307(2): e220869, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36719290

RESUMO

Background Neurodegenerative disorders (such as Alzheimer disease) characterized by the deposition of various pathogenic forms of tau protein in the brain are collectively referred to as tauopathies. Identification of the molecular drivers and pathways of neurodegeneration is critical to individualized targeted treatment of these disorders. However, despite important advances in fluid biomarker detection, characterization of these molecular subtypes is limited by the blood-brain barrier. Purpose To evaluate the feasibility and safety of focused ultrasound-mediated liquid biopsy (sonobiopsy) in the detection of brain-derived protein biomarkers in a transgenic mouse model of tauopathy (PS19 mice). Materials and Methods Sonobiopsy was performed by sonicating the cerebral hemisphere in 2-month-old PS19 and wild-type mice, followed by measurement of plasma phosphorylated tau (p-tau) species (30 minutes after sonication in the sonobiopsy group). Next, spatially targeted sonobiopsy was performed by sonicating either the cerebral cortex or the hippocampus in 6-month-old PS19 mice. To detect changes in plasma neurofilament light chain (a biomarker of neurodegeneration) levels, blood samples were collected before and after sonication (15 and 45-60 minutes after sonication). Histologic staining was performed to evaluate tissue damage after sonobiopsy. The Shapiro-Wilk test, unpaired and paired t tests, and the Mann-Whitney U test were used. Results In the 2-month-old mice, sonobiopsy significantly increased the normalized levels of plasma p-tau species compared with the conventional blood-based liquid biopsy (p-tau-181-to-mouse tau [m-tau] ratio: 1.7-fold increase, P = .006; p-tau-231-to-m-tau ratio: 1.4-fold increase, P = .048). In the 6-month-old PS19 mice, spatially targeted sonobiopsy resulted in a 2.3-fold increase in plasma neurofilament light chain after sonication of the hippocampus and cerebral cortex (P < .001). After optimization of the sonobiopsy parameters, no excess microhemorrhage was observed in the treated cerebral hemisphere compared with the contralateral side. Conclusion This study showed the feasibility of sonobiopsy to release phosphorylated tau species and neurofilament light chain to the blood circulation, potentially facilitating diagnosis of neurodegenerative disorders. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Fowlkes in this issue.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Tauopatias , Camundongos , Animais , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Biomarcadores
6.
EBioMedicine ; 84: 104277, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36152518

RESUMO

BACKGROUND: Adeno-associated viral (AAV) vectors are currently the leading platform for gene therapy with the potential to treat a variety of central nervous system (CNS) diseases. There are numerous methods for delivering AAVs to the CNS, such as direct intracranial injection (DI), intranasal delivery (IN), and intravenous injection with focused ultrasound-induced blood-brain barrier disruption (FUS-BBBD). However, non-invasive and efficient delivery of AAVs to the brain with minimal systemic toxicity remain the major challenge. This study aims to investigate the potential of focused ultrasound-mediated intranasal delivery (FUSIN) in AAV delivery to brain. METHODS: Mice were intranasally administered with AAV5 encoding enhanced green fluorescence protein (AAV5-EGFP) followed by FUS sonication in the presence of systemically injected microbubbles. Mouse brains and other major organs were harvested for immunohistological staining, PCR quantification, and in situ hybridization. The AAV delivery outcomes were compared with those of DI, FUS-BBBD, and IN delivery. FINDINGS: FUSIN achieved safe and efficient delivery of AAV5-EGFP to spatially targeted brain locations, including a superficial brain site (cortex) and a deep brain region (brainstem). FUSIN achieved comparable delivery outcomes as the established DI, and displayed 414.9-fold and 2073.7-fold higher delivery efficiency than FUS-BBBD and IN. FUSIN was associated with minimal biodistribution in peripheral organs, which was comparable to that of DI. INTERPRETATION: Our results suggest that FUSIN is a promising technique for non-invasive, efficient, safe, and spatially targeted AAV delivery to the brain. FUNDING: National Institutes of Health (NIH) grants R01EB027223, R01EB030102, R01MH116981, and UG3MH126861.


Assuntos
Barreira Hematoencefálica , Receptores CXCR4 , Administração Intranasal , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Camundongos , Receptores CXCR4/metabolismo , Distribuição Tecidual , Estados Unidos
7.
Theranostics ; 12(1): 362-378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987650

RESUMO

Though surgical biopsies provide direct access to tissue for genomic characterization of brain cancer, they are invasive and pose significant clinical risks. Brain cancer management via blood-based liquid biopsies is a minimally invasive alternative; however, the blood-brain barrier (BBB) restricts the release of brain tumor-derived molecular biomarkers necessary for sensitive diagnosis. Methods: A mouse glioblastoma multiforme (GBM) model was used to demonstrate the capability of focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) to improve the diagnostic sensitivity of brain tumor-specific genetic mutations compared with conventional blood-based liquid biopsy. Furthermore, a pig GBM model was developed to characterize the translational implications of sonobiopsy in humans. Magnetic resonance imaging (MRI)-guided FUS sonication was performed in mice and pigs to locally enhance the BBB permeability of the GBM tumor. Contrast-enhanced T1-weighted MR images were acquired to evaluate the BBB permeability change. Blood was collected immediately after FUS sonication. Droplet digital PCR was used to quantify the levels of brain tumor-specific genetic mutations in the circulating tumor DNA (ctDNA). Histological staining was performed to evaluate the potential for off-target tissue damage by sonobiopsy. Results: Sonobiopsy improved the detection sensitivity of EGFRvIII from 7.14% to 64.71% and TERT C228T from 14.29% to 45.83% in the mouse GBM model. It also improved the diagnostic sensitivity of EGFRvIII from 28.57% to 100% and TERT C228T from 42.86% to 71.43% in the porcine GBM model. Conclusion: Sonobiopsy disrupts the BBB at the spatially-targeted brain location, releases tumor-derived DNA into the blood circulation, and enables timely collection of ctDNA. Converging evidence from both mouse and pig GBM models strongly supports the clinical translation of sonobiopsy for the minimally invasive, spatiotemporally-controlled, and sensitive molecular characterization of brain cancer.


Assuntos
Neoplasias Encefálicas , DNA Tumoral Circulante/metabolismo , Glioblastoma , Biópsia Líquida/métodos , Sonicação/métodos , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Suínos
8.
Pharmaceutics ; 13(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535531

RESUMO

Immune checkpoint inhibitors have great potential for the treatment of gliomas; however, their therapeutic efficacy has been partially limited by their inability to efficiently cross the blood-brain barrier (BBB). The objective of this study was to evaluate the capability of focused-ultrasound-mediated intranasal brain drug delivery (FUSIN) in achieving the locally enhanced delivery of anti-programmed cell death-ligand 1 antibody (aPD-L1) to the brain. Both non-tumor mice and mice transcranially implanted with GL261 glioma cells at the brainstem were used in this study. aPD-L1 was labeled with a near-infrared fluorescence dye (IRDye 800CW) and administered to mice through the nasal route to the brain, followed by focused ultrasound sonication in the presence of systemically injected microbubbles. FUSIN enhanced the accumulation of aPD-L1 at the FUS-targeted brainstem by an average of 4.03- and 3.74-fold compared with intranasal (IN) administration alone in the non-tumor mice and glioma mice, respectively. Immunohistochemistry staining found that aPD-L1 was mainly located within the perivascular spaces after IN delivery, while FUSIN further enhanced the penetration depth and delivery efficiency of aPD-L1 to the brain parenchyma. The delivered aPD-L1 was found to be colocalized with the tumor cells after FUSIN delivery to the brainstem glioma. These findings suggest that FUSIN is a promising technique to enhance the delivery of immune checkpoint inhibitors to gliomas.

9.
Front Phys ; 92021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994329

RESUMO

Immune checkpoint inhibitors (ICIs) are designed to reinvigorate antitumor immune responses by interrupting inhibitory signaling pathways and promoting the immune-mediated elimination of malignant cells. Although ICI therapy has transformed the landscape of cancer treatment, only a subset of patients achieve a complete response. Focused ultrasound (FUS) is a noninvasive, nonionizing, deep penetrating focal therapy that has great potential to improve the efficacy of ICIs in solid tumors. Five FUS modalities have been incorporated with ICIs to explore their antitumor effects in preclinical studies, namely, high-intensity focused ultrasound (HIFU) thermal ablation, HIFU hyperthermia, HIFU mechanical ablation, ultrasound-targeted microbubble destruction (UTMD), and sonodynamic therapy (SDT). The enhancement of the antitumor immune responses by these FUS modalities demonstrates the great promise of FUS as a transformative cancer treatment modality to improve ICI therapy. Here, this review summarizes these emerging applications of FUS modalities in combination with ICIs. It discusses each FUS modality, the experimental protocol for each combination strategy, the induced immune effects, and therapeutic outcomes.

10.
J Control Release ; 266: 238-247, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28987879

RESUMO

Worldwide, tuberculosis (TB) remains one of the most prevalent infectious diseases causing morbidity and death in >1.5 million patients annually. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, usually resides in the alveolar macrophages. Current tuberculosis treatment methods require more than six months, and low compliance often leads to therapeutic failure and multidrug resistant strain development. Critical to improving TB-therapy is shortening treatment duration and increasing therapeutic efficacy. In this study, we sought to determine if lung hemodynamics and pathological changes in Mtb infected cells can be used for the selective targeting of microparticles to infected tissue(s). Thioaptamers (TA) with CD44 (CD44TA) targeting moiety were conjugated to discoidal silicon mesoporous microparticles (SMP) to enhance accumulation of these agents/carriers in the infected macrophages in the lungs. In vitro, CD44TA-SMP accumulated in macrophages infected with mycobacteria efficiently killing the infected cells and decreasing survival of mycobacteria. In vivo, increased accumulations of CD44TA-SMP were recorded in the lung of M. tuberculosis infected mice as compared to controls. TA-targeted carriers significantly diminished bacterial load in the lungs and caused recruitment of T lymphocytes. Proposed mechanism of action of the designed vector accounts for a combination of increased uptake of particles that leads to infected macrophage death, as well as, activation of cellular immunity by the TA, causing increased T-cell accumulation in the treated lungs. Based on our data with CD44TA-SMP, we anticipate that this drug carrier can open new avenues in TB management.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Receptores de Hialuronatos/genética , Mycobacterium tuberculosis , Tuberculose/tratamento farmacológico , Animais , Células Cultivadas , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Silício/administração & dosagem , Linfócitos T/imunologia , Tuberculose/imunologia , Tuberculose/metabolismo
11.
J Chem Phys ; 146(19): 194303, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28527467

RESUMO

We conducted gas phase anion photoelectron spectroscopy and density functional theory studies on a number of gold acetylide species, such as AuC2H, AuC2Au, and Au2C2H. Based on the photoelectron spectra, the electron affinities of AuC2H, AuC2Au, and Au2C2H are measured to be 1.54(±0.04), 1.60(±0.08), and 4.23(±0.08) eV, respectively. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps of AuC2H and AuC2Au are measured to be about 2.62 and 2.48 eV, respectively. It is interesting that photoelectron spectra of AuC2H- and AuC2Au- display similar spectral features. The comparison of experimental and theoretical results confirms that the ground-state structures of AuC2H-, AuC2Au-, and their neutrals are all linear with Au-C≡C-H and Au-C≡C-Au configurations. The similar geometric structures, spectral features, HOMO-LUMO gaps, and chemical bonding between AuC2H-/0 and AuC2Au-/0 demonstrate that Au atom behaves like H atom in these species. The photoelectron spectrum of Au2C2H- shows that Au2C2H has a high electron affinity of 4.23(±0.08) eV, indicating Au2C2H is a superhalogen. Further, we found an unusual similarity between the terminal Au atom of Au2C2H- and the iodine atom of IAuC2H-.

12.
Cancer Immunol Res ; 4(12): 1016-1026, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27803062

RESUMO

Interleukin-2 (IL2) was among the earliest reagents used for cancer immunotherapy due to its ability to support the survival and function of tumor-reactive T cells. However, treatment with IL2 is accompanied by off-target toxicity and low response rates in patients. In mouse models, these issues are largely overcome when IL2 is administered as a cytokine/antibody complex (IL2c). The complex has a longer serum half-life and can be designed for preferential cytokine delivery to specific cells of interest. Early studies showed IL2c could boost antitumor immunity in mice by activating tumor-reactive CD8+ T cells. But such functional T cells are often limited in the tumor microenvironment, where instead unresponsive tolerant T cells are eventually eliminated by apoptosis, representing a major obstacle to the success of cancer immunotherapy. We found that IL2c treatment rescued tumor-specific CD8+ T cells from a state of established tolerance, providing effective immunotherapy in tumor-bearing mice. Expression of the transcription factor T-bet was necessary to drive intratumoral IFNγ production and effector activity by T cells rescued with IL2c. Furthermore, IL2c promoted T-bet expression in human CD4+ and CD8+ T cells in humanized tumor-bearing mice, but also increased the frequency of Foxp3+ regulatory T cells. Our study reveals a novel role for IL2c as a powerful immunotherapeutic reagent capable of reversing tolerance in tumor-reactive T cells, and provides the first evidence that IL2c influences human T cells in vivo, highlighting the translational potential to modulate human antitumor immune responses. Cancer Immunol Res; 4(12); 1016-26. ©2016 AACR.


Assuntos
Anticorpos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Interleucina-2/imunologia , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Humanos , Tolerância Imunológica , Camundongos Transgênicos , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/genética
13.
J Am Chem Soc ; 137(49): 15350-3, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26595532

RESUMO

Controlling the dopant type, number, and position in doped metal nanoclusters (nanoparticles) is crucial but challenging. In the work described herein, we successfully achieved the mono-cadmium doping of Au25 nanoclusters, and revealed using X-ray crystallography in combination with theoretical calculations that one of the inner-shell gold atoms of Au25 was replaced by a Cd atom. The doping mode is distinctly different from that of mono-mercury doping, where one of the outer-shell Au atoms was replaced by a Hg atom. Au24Cd is readily transformed to Au24Hg, while the reverse (transformation from Au24Hg to Au24Cd) is forbidden under the investigated conditions.

14.
PLoS Comput Biol ; 11(4): e1004249, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25894830

RESUMO

While the role of drug resistance mutations in HIV protease has been studied comprehensively, mutations in its substrate, Gag, have not been extensively cataloged. Using deep sequencing, we analyzed a unique collection of longitudinal viral samples from 93 patients who have been treated with therapies containing protease inhibitors (PIs). Due to the high sequence coverage within each sample, the frequencies of mutations at individual positions were calculated with high precision. We used this information to characterize the variability in the Gag polyprotein and its effects on PI-therapy outcomes. To examine covariation of mutations between two different sites using deep sequencing data, we developed an approach to estimate the tight bounds on the two-site bivariate probabilities in each viral sample, and the mutual information between pairs of positions based on all the bounds. Utilizing the new methodology we found that mutations in the matrix and p6 proteins contribute to continued therapy failure and have a major role in the network of strongly correlated mutations in the Gag polyprotein, as well as between Gag and protease. Although covariation is not direct evidence of structural propensities, we found the strongest correlations between residues on capsid and matrix of the same Gag protein were often due to structural proximity. This suggests that some of the strongest inter-protein Gag correlations are the result of structural proximity. Moreover, the strong covariation between residues in matrix and capsid at the N-terminus with p1 and p6 at the C-terminus is consistent with residue-residue contacts between these proteins at some point in the viral life cycle.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/virologia , Inibidores da Protease de HIV/farmacologia , Protease de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/genética
15.
Cancer Immunol Res ; 3(2): 116-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25516478

RESUMO

Coinhibitory receptor blockade is a promising strategy to boost T-cell immunity against a variety of human cancers. However, many patients still do not benefit from this treatment, and responders often experience immune-related toxicities. These issues highlight the need for advanced mechanistic understanding to improve patient outcomes and uncover clinically relevant biomarkers of treatment efficacy. However, the T-cell-intrinsic signaling pathways engaged during checkpoint blockade treatment are not well defined, particularly for combination approaches. Using a murine model to study how effector CD8(+) T-cell responses to tumors may be enhanced in a tolerizing environment, we identified a critical role for the T-box transcription factor T-bet. Combination blockade of CTLA-4, PD-1, and LAG-3 induced T-bet expression in responding tumor/self-reactive CD8(+) T cells. Eradication of established leukemia using this immunotherapy regimen depended on T-bet induction, which was required for IFNγ production and cytotoxicity by tumor-infiltrating T cells, and for efficient trafficking to disseminated tumor sites. These data provide new insight into the success of checkpoint blockade for cancer immunotherapy, revealing T-bet as a key transcriptional regulator of tumor-reactive CD8(+) T-cell effector differentiation under otherwise tolerizing conditions.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Proteínas com Domínio T/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Tolerância Imunológica/imunologia , Leucemia Experimental/genética , Leucemia Experimental/imunologia , Leucemia Experimental/terapia , Camundongos Transgênicos , Transplante de Neoplasias
16.
PLoS One ; 9(10): e110707, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25343644

RESUMO

Establishing peripheral CD8(+) T cell tolerance is vital to avoid immune mediated destruction of healthy self-tissues. However, it also poses a major impediment to tumor immunity since tumors are derived from self-tissue and often induce T cell tolerance and dysfunction. Thus, understanding the mechanisms that regulate T cell tolerance versus immunity has important implications for human health. Signals received from the tissue environment largely dictate whether responding T cells become activated or tolerant. For example, induced expression and subsequent ligation of negative regulatory receptors on the surface of self-reactive CD8(+) T cells are integral in the induction of tolerance. We utilized a murine model of T cell tolerance to more completely define the molecules involved in this process. We discovered that, in addition to other known regulatory receptors, tolerant self-reactive CD8(+) T cells distinctly expressed the surface receptor neuropilin-1 (Nrp1). Nrp1 was highly induced in response to self-antigen, but only modestly when the same antigen was encountered under immune conditions, suggesting a possible mechanistic link to T cell tolerance. We also observed a similar Nrp1 expression profile on human tumor infiltrating CD4(+) and CD8(+) T cells. Despite high expression on tolerant CD8(+) T cells, our studies revealed that Nrp1 had no detectable role in the tolerant phenotype. Specifically, Nrp1-deficient T cells displayed the same functional defects as wild-type self-reactive T cells, lacking in vivo cytolytic potential, IFNγ production, and antitumor responses. While reporting mostly negative data, our findings have therapeutic implications, as Nrp1 is now being targeted for human cancer therapy in clinical trials, but the precise molecular pathways and immune cells being engaged during treatment remain incompletely defined.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Tolerância Imunológica/imunologia , Neuropilina-1/metabolismo , Transferência Adotiva , Animais , Autoantígenos/imunologia , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Proliferação de Células , Apresentação Cruzada/imunologia , Citotoxicidade Imunológica , Hepatócitos/metabolismo , Humanos , Imunoterapia , Leucemia/imunologia , Leucemia/terapia , Fígado/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Fenótipo
17.
Immunotherapy ; 6(7): 833-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25290416

RESUMO

In the final issue of Science in 2013, the American Association of Science recognized progress in the field of cancer immunotherapy as the 'Breakthrough of the Year.' The achievements were actually twofold, owing to the early success of genetically engineered chimeric antigen receptors (CAR) and to the mounting clinical triumphs achieved with checkpoint blockade antibodies. While fundamentally very different, the common thread of these independent strategies is the ability to prevent or overcome mechanisms of CD8(+) T-cell tolerance for improved tumor immunity. Here we discuss how circumventing T-cell tolerance has provided experimental insights that have guided the field of clinical cancer immunotherapy to a place where real breakthroughs can finally be claimed.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Engenharia Genética , Tolerância Imunológica , Imunidade Celular , Imunoterapia/métodos , Receptores de Antígenos de Linfócitos T , Animais , Linfócitos T CD8-Positivos/patologia , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
18.
J Leukoc Biol ; 96(3): 397-410, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24823810

RESUMO

CD8(+) T cells must detect foreign antigens and differentiate into effector cells to eliminate infections. But, when self-antigen is recognized instead, mechanisms of peripheral tolerance prevent acquisition of effector function to avoid autoimmunity. These distinct responses are influenced by inflammatory and regulatory clues from the tissue environment, but the mechanism(s) by which naive T cells interpret these signals to generate the appropriate immune response are unclear. The identification of the molecules operative in these cell-fate decisions is crucial for developing new treatment options for patients with cancer or autoimmunity, where manipulation of T cell activity is desired to alter the course of disease. With the use of an in vivo murine model to examine CD8(+) T cell responses to healthy self-tissue, we correlated self-tolerance with a failure to induce the T-box transcription factors T-bet and Eomes. However, inflammation associated with acute microbial infection induced T-bet and Eomes expression and promoted effector differentiation of self-reactive T cells under conditions that normally favor tolerance. In the context of a Listeria infection, these functional responses relied on elevated T-bet expression, independent of Eomes. Alternatively, infection with LCMV induced higher Eomes expression, which was sufficient in the absence of T-bet to promote effector cytokine production. Our results place T-box transcription factors at a molecular crossroads between CD8(+) T cell anergy and effector function upon recognition of peripheral self-antigen, and suggest that inflammation during T cell priming directs these distinct cellular responses.


Assuntos
Deleção Clonal/imunologia , Inflamação/imunologia , Tolerância a Antígenos Próprios/imunologia , Proteínas com Domínio T/fisiologia , Linfócitos T/imunologia , Animais , Autoantígenos/imunologia , Diferenciação Celular , Linhagem Celular Tumoral , Anergia Clonal/imunologia , Citocinas/biossíntese , Citocinas/genética , Regulação da Expressão Gênica/imunologia , Genes RAG-1 , Imunização , Leucemia Eritroblástica Aguda/imunologia , Leucemia Eritroblástica Aguda/terapia , Listeria/imunologia , Listeriose/imunologia , Camundongos , Camundongos Knockout , Baço/imunologia , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Especificidade do Receptor de Antígeno de Linfócitos T
19.
J Virol Methods ; 189(1): 232-4, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384677

RESUMO

The development of next-generation sequencing technologies has facilitated the study of HIV drug resistance evolution. However, the high capacity and per-run cost of many sequencers is not ideal for viral sequencing unless many samples are analyzed simultaneously. Ion semiconductor sequencing has recently emerged as a flexible, lower-cost alternative with short runtime. This paper describes the use of Ion Torrent devices for deep sequencing of drug resistant HIV samples. High levels of sequencing coverage were obtained in HIV Gag and protease, allowing the detection of mutations at low frequencies.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/virologia , Protease de HIV/genética , HIV/efeitos dos fármacos , HIV/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Sequência de Bases , Farmacorresistência Viral/genética , Genes gag , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Inibidores da Protease de HIV/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , RNA Viral/genética , Análise de Sequência de RNA
20.
J Med Chem ; 55(11): 4968-77, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22587465

RESUMO

The HIV-1 nucleocapsid (NC) is a RNA/DNA binding protein encoded within the Gag polyprotein, which is critical for the selection and chaperoning of viral genomic RNA during virion assembly. RNA/DNA binding occurs through a highly conserved zinc-knuckle motif present in NC. Given the necessity of NC-viral RNA/DNA interaction for viral replication, identification of compounds that disrupt the NC-RNA/DNA interaction may have value as an antiviral strategy. To identify small molecules that disrupt NC-viral RNA/DNA binding, a high-throughput fluorescence polarization assay was developed and a library of 14,400 diverse, druglike compounds was screened. Compounds that disrupted NC binding to a fluorescence-labeled DNA tracer were next evaluated by differential scanning fluorimetry to identify compounds that must bind to NC or Gag to impart their effects. Two compounds were identified that inhibited NC-DNA interaction, specifically bound NC with nanomolar affinity, and showed modest anti-HIV-1 activity in ex vivo cell assays.


Assuntos
Fármacos Anti-HIV/síntese química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Benzodioxóis/síntese química , Benzodioxóis/química , Benzodioxóis/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Células Cultivadas , DNA Viral/metabolismo , Polarização de Fluorescência , Fluorometria , Proteínas de Fluorescência Verde/genética , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Isoxazóis/farmacologia , Ligação Proteica , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química , Tiazolidinas/farmacologia , Tiofenos/síntese química , Tiofenos/química , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA