Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 220: 96-107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503100

RESUMO

Successful male reproduction depends on healthy testes. Autophagy has been confirmed to be active during many cellular events associated with the testes. It is not only crucial for testicular spermatogenesis but is also an essential regulatory mechanism for Sertoli cell (SCs) ectoplasmic specialization integrity and normal function of the blood-testis-barrier. Hypoxic stress induces oxidative damage, apoptosis, and autophagy, negatively affecting the male reproductive system. Cryptorchidism is a common condition associated with infertility. Recent studies have demonstrated that hypoxia-induced miRNAs and their transcription factors are highly expressed in the testicular tissue of infertile patients. Heme oxygenase 1 (HO1) is a heat-shock protein family member associated with cellular antioxidant defense and anti-apoptotic functions. The present study found that the HO1 mRNA and protein are up-regulated in yak cryptorchidism compared to normal testes. Next, we investigated the expression of HO1 in the SCs exposed to hypoxic stress and characterized the expression of key molecules involved in autophagy and apoptosis. The results showed that hypoxic stress induced the upregulation of autophagy of SCs. The down-regulation of HO1 using siRNA increases autophagy and decreases apoptosis, while the over-expression of HO1 attenuates autophagy and increases apoptosis. Furthermore, HO1 regulates autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway. These results will be helpful for further understanding the regulatory mechanisms of HO1 in yak cryptorchidism.


Assuntos
Doenças dos Bovinos , Criptorquidismo , Heme Oxigenase-1 , Animais , Bovinos , Masculino , Apoptose , Autofagia , Doenças dos Bovinos/metabolismo , Criptorquidismo/metabolismo , Criptorquidismo/veterinária , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Sertoli/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
2.
Animals (Basel) ; 14(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254351

RESUMO

Yaks, a valuable livestock species endemic to China's Tibetan plateau, have a low reproductive rate. Cryptorchidism is believed to be one of the leading causes of infertility in male yaks. In this study, we compared the morphology of the normal testis of the yak with that of the cryptorchidism, and found dysplasia of the seminiferous tubules, impaired tightness of the Sertoli cells, and a disruption of the integrity of the blood-testis barrier (BTB) in the cryptorchidism. Previous studies have shown that CAV1 significantly contributes to the regulation of cell tight junctions and spermatogenesis. Therefore, we hypothesize that CAV1 may play a regulatory role in tight junctions and BTB in Yaks Sertoli cells, thereby influencing the development of cryptorchidism. Additional analysis using immunofluorescence, qRT-PCR, and Western blotting confirmed that CAV1 expression is up-regulated in yak cryptorchidism. CAV1 over-expression plasmids and small RNA interference sequences were then transfected in vitro into yak Sertoli cells. It was furthermore found that CAV1 has a positive regulatory effect on tight junctions and BTB integrity, and that this regulatory effect is achieved through the FAK/ERK signaling pathway. Taken together, our findings, the first application of CAV1 to yak cryptorchidism, provide new insights into the molecular mechanisms of cell tight junctions and BTB. This paper suggests that CAV1 could be used as a potential therapeutic target for yak cryptorchidism and may provide insight for future investigations into the occurrence of cryptorchidism, the maintenance of a normal physiological environment for spermatogenesis and male reproductive physiology in the yak.

3.
PLoS One ; 18(10): e0290775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878614

RESUMO

MTNR1A and MTNR1B, two high-affinity MT membrane receptors found in mammals, mediate the activity of MT on the HPGA to regulate animal reproduction. Nevertheless, the expression patterns and function of the MTNR1A and MTNR1B genes in the HPTA of seasonal estrus sheep and perennial estrus sheep have not been elucidated. We studied the expression of MTNR1A and MTNR1B in the hypothalamic-pituitary-testicular axis (HPTA) of Tibetan sheep at different reproductive stages using histochemistry, enzyme linked immunosorbent assay (ELSIA), scanning electron microscopy, transmission electron microscopy, quantitative Real-time PCR (qRT-PCR), and Western blot (WB), and analyzed the relationship between their expression and reproductive hormone receptors. We also compared relevant characteristics between seasonal Tibetan sheep and non-seasonal Small Tail Han sheep in the same pastoral area. The results showed that MTNR1A and MTNR1B were expressed in all tissues of the Tibetan sheep HPTA, and both were co-expressed in the cytoplasm of epididymis basal and halo cells located at common sites of the epididymis basement membrane, forming an immune barrier. The qRT-PCR analysis showed that not only MTNR1A but also N-acetyltransferase (AANAT), hydroxyindole-oxygen- methyltransferase (HIOMT), androgen receptor (AR), and estrogen receptor α (ERα) mRNA expression was significantly upregulated in the testis and epididymis of Tibetan sheep during the breeding season, whereas no clear upregulation of these genes was observed in the tissues of Small Tail Han sheep. MTNR1A and MTNR1B are important regulators of the HPTA in sheep. MTNR1A mediates seasonal estrus regulation in Tibetan sheep. Both MTNR1A and MTNR1B may play important roles in formation of the blood-epididymal barrier. The results of this study should help advance research on the mechanism of reproductive regulation of the HPTA in male animals and provide reference data for improving the reproductive rate of seasonal breeding animals.


Assuntos
Melatonina , Testículo , Feminino , Ovinos , Masculino , Animais , Testículo/metabolismo , Tibet , Receptores de Melatonina/genética , Reprodução/fisiologia , Mamíferos/metabolismo
4.
Anat Histol Embryol ; 52(4): 636-644, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37089018

RESUMO

The purpose of this study was to compare between the histochemical characteristics and the expression of epidermal growth factor (EGF) and it's receptor (EGFR) in the submandibular gland (SMG) of adult yaks and yellow cattle. The SMG tissues of yaks and yellow cattles were collected for histochemical, immunohistochemical (IHC), immunofluorescence (F-IHC),real-time quantitative polymerasechain reaction (RT-qPCR) and Western blotting methods. The results showed that the striated ducts of SMG were highly developed and connected to the intercalated ducts, which were shorter and directly connected to the acini. Compared with yellow cattle, yak SMG contains more mucous acini. Immunofluorescence showed significant expression of EGF and its receptor in both striated and intercalated ducts of these two species of cattle. Statistical analysis divulged that the distribution density of EGF and EGFR in the SMG of the yak was both significantly higher than that in yellow cattle (p < 0.05). Furthermore, the mRNA expression of EGF and EGFR in yak SMG was also higher than that in yellow cattle. The above results indicated that the intercalated ducts and striated ducts are the main expression sites of EGF and EGFR, the acidic mucin and EGF secreted from SMG of yak were more than that from yellow cattle. The results of this study provide powerful data for the study of physiological functions of submaxillary gland in ruminants and also provide important clues for the study of adaptive physiological mechanisms in plateau organisms.


Assuntos
Fator de Crescimento Epidérmico , Glândula Submandibular , Bovinos , Animais , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Western Blotting/veterinária , Células Acinares , Receptores ErbB/genética , Receptores ErbB/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768240

RESUMO

Induced pluripotent stem cells (iPSCs) can differentiate into all types of cells and can be used in livestock for research on biological development, genetic breeding, and in vitro genetic resource conservation. The Bactrian camel is a large domestic animal that inhabits extreme environments and holds value in the treatment of various diseases and the development of the local economy. Therefore, we transferred four mouse genes (Oct4, Sox2, Klf4, and c-Myc) into Bactrian camel fetal fibroblasts (BCFFs) using retroviruses with a large host range to obtain Bactrian camel induced pluripotent stem cells (bciPSCs). They were comprehensively identified based on cell morphology, pluripotency gene and marker expression, chromosome number, transcriptome sequencing, and differentiation potential. The results showed the pluripotency of bciPSCs. However, unlike stem cells of other species, late formation of stem cell clones was observed; moreover, the immunofluorescence of SSEA1, SSEA3, and SSEA4 were positive, and teratoma formation took four months. These findings may be related to the extremely long gestation period and species specificity of Bactrian camels. By mining RNA sequence data, 85 potential unique pluripotent genes of Bactrian camels were predicted, which could be used as candidate genes for the production of bciPSC in the future. Among them, ASF1B, DTL, CDCA5, PROM1, CYTL1, NUP210, Epha3, and SYT13 are more attractive. In conclusion, we generated bciPSCs for the first time and obtained their transcriptome information, expanding the iPSC genetic information database and exploring the applicability of iPSCs in livestock. Our results can provide an experimental basis for Bactrian camel ESC establishment, developmental research, and genetic resource conservation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Camelus/genética , Diferenciação Celular/genética , Animais Domésticos/metabolismo , Antígenos CD15/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Citocinas/metabolismo
6.
Front Vet Sci ; 9: 877685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647105

RESUMO

Escherichia coli (E. coli) is one of the major pathogenic bacteria in bovine mastitis, which usually triggers systemic symptoms by releasing lipopolysaccharide (LPS). waaF is the core in LPS pathogenicity. In this study, a new waaF vaccine candidate was identified, constructed with the pcDNA3.1 (+)HisB-waaF plasmid to create to a DNA vaccine (pcwaaF), and transfected into MCF-7 cells to produce recombinant waaF subunit vaccine (rwaaF). After that, the safety of the two vaccine candidates was evaluated in mouse model. Immunogenicity and mortality of challenged mice were compared in 20 and 40 µg per dose, respectively. The results showed that rwaaF and pcwaaF were successfully constructed and the complete blood count and serum biochemical indicated that both of the vaccine candidates were safe (p > 0.05). In addition, histopathological staining showed no obvious pathological changes. The immune response induced by rwaaF was significantly higher than that of pcwaaF (p < 0.01), indicated by levels of serum concentration of IgG IL-2, IL-4, and IFN-γ, and feces concentration of sIgA. Survival rates of mice in rwaaF groups (both 80%) were also higher than in the pcwaaF groups (40 and 50%, respectively). Comparing the safety, immunogenicity, and E. coli challenge of two vaccine candidates, rwaaF had the better effect and 20 µg rwaaF was more economical. In conclusion, this study demonstrates the utility of a new E. coli vaccine and provides a rationale for further investigation of bovine mastitis therapy and management.

7.
Anim Reprod ; 19(2): e20220005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712443

RESUMO

The Ziwuling black goat is an indigenously in China, their offspring are frequently affected by congenital cryptorchidism. The extracellular matrix (ECM) contains cytokines and growth factors that regulate the development of the testis, and component changes often result in pathological changes. Cryptorchidism is closely related to structural changes in ECM. In this study, the histochemical staining, immunohistochemical, immunofluorescence and Western blot combined with semi-quantitative analysis was used to describe the distribution of the important ECM components Collagen type IV (Col IV), laminin (LN)and heparan sulfate proteoglycans (HSPG) in the normal and cryptorchid testes of Ziwuling black goats. Results showed that: The histochemical staining showed that the dysplasia of seminiferous tubules and decreased number of Sertoli cells in cryptorchidism, as well as sparse collagen fiber. Meanwhile, the distribution of reticular fibers is relatively rich. Furthermore, the PAS and AB staining in the interstitial vessels and lamina propria of seminiferous tubules is weak. The immunohistochemical and immunofluorescence revealed that Col IV, LN was strongly expressed in Leydig, Sertoli cells of normal testes and moderately positive in the spermatogonia and spermatids, but HSPG was not expressed in the spermatogonia. However, cryptorchidism, the expression of Col IV, LN and HPSG in Leydig, Sertoli cells significantly decreased, as well as the expression of Col IV and LN in capillary endothelial cells, but HSPG was moderately expressed in spermatogonia. Based on these data, the underdevelopment of spermatogenic epithelium, decreased synthesis function of collagen fibers and Leydig cells develop usually in the cryptorchidism were shown to be closely related to the abnormal metabolism of Col IV and LN. The positive expressed of HSPG in the spermatogonia of cryptorchid testes is related to the compensatory development of spermatogonia.

8.
Reprod Biol Endocrinol ; 17(1): 1, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606208

RESUMO

BACKGROUND: Melatonin is an amine hormone that plays an important role in regulating mammalian reproduction. This study aimed to investigate the expression pattern of melatonin synthesis enzymes AANAT and HIOMT and melatonin receptors MT1 and MT2 in sheep cumulus-oocyte complexes (COCs) as well as the change of melatonin level in follicular fluid (FF) during antral follicle development. In this research, we also study the effect of ß-estradiol (E2) on MT1 and MT2 expression as well as melatonin synthesis in COCs so as to lay the foundation for further exploration of the regulation mechanism of melatonin synthesis in the ovary. METHODS: COCs and FF were collected from different size (large follicles (diameter ≥ 5 mm), medium follicles (diameter 2-5 mm), and small follicles (diameter ≤ 2 mm)) of antral follicles in sheep ovaries. To assess whether E2 regulates melatonin synthase and its receptors expression in sheep COCs and whether it is mediated through estrogen receptor (ER) pathway. The collected COCs were cultured in vitro for 24 h and then treat with 1 µM E2 and/or 1 µM ICI182780 (non-selective ER antagonist). The expression of AANAT, HIOMT, MT1 and MT2 mRNA and protein were determined by qRT-PCR and western blot. The melatonin level was determined by ELISA. RESULTS: The expression of AANAT, HIOMT, MT1 and MT2 were significantly higher expression in the COCs of small follicles than in those of large follicles (P < 0.05). However, the melatonin level was significantly higher in large follicle FF than in small follicle FF (P < 0.05). Further, the expression of AANAT, HIOMT, MT1, and MT2 and melatonin production were decreased by E2 treatment (P < 0.05), but when ICI182780 was added, the expression of AANAT, HIOMT, MT1, and MT2 and melatonin production recovered (P < 0.05). CONCLUSIONS: We suggest that sheep COCs can synthesize melatonin, but this ability is decreased with increasing follicle diameter. Furthermore, E2 play an important role in regulated the expression of MT1 and MT2 as well as melatonin synthesis in sheep COCs through the ER pathway.


Assuntos
Células do Cúmulo/metabolismo , Estradiol/farmacologia , Melatonina/biossíntese , Oócitos/metabolismo , Receptores de Melatonina/metabolismo , Ovinos/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Estradiol/metabolismo , Estradiol/fisiologia , Feminino , Líquido Folicular/metabolismo , Melatonina/metabolismo , Folículo Ovariano/metabolismo , Receptores de Estrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA