RESUMO
BACKGROUND: Craniocerebral injuries can cause inflammation and oxidative stress, and can have permanent effects on cognitive function. Moreover, over time, excessive expression of inflammatory factors and high levels of oxidative stress will be detrimental to recovery from craniocerebral injury and may exacerbate neurological damage, further damaging neurons and other cellular structures. In this study, we investigated changes in inflammation and stress indicators in patients with severe craniocerebral injuries, and analyzed associations with concurrent cognitive impairment. METHODS: 82 patients with severe craniocerebral injuries admitted to Longyou County People's Hospital during January 2022-June 2023 were selected for retrospective study. Levels of inflammatory factors and the degree of oxidative stress were recorded and compared between the acute and chronic phases. Inflammatory measures included interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α) and C-reactive protein (CRP), and oxidative stress indicators included human cortisol (Cor), norepinephrine (NE), and superoxide dismutase (SOD). The patients' cognitive function was evaluated using the Mini-Mental State Examination (MMSE), and the incidence of cognitive impairment was assessed. Spearman's correlation was used to analyze associations between inflammatory and oxidative stress measures and MMSE scores; logistic regression was used to analyze the related factors affecting the patients' concurrent cognitive impairment; and the receiver operating characteristic (ROC) curve was used to test the predictive value of inflammatory and oxidative stress measures on the patients' concurrent cognitive impairment in the acute phase and the chronic phase. RESULTS: Patients had higher levels of IL-6, IL-10, TNF-α, CRP, Cor, and NE, and lower levels of SOD, in the acute phase compared to the chronic phase (p < 0.05). MMSE scores were higher in the acute phase than in the chronic phase (p < 0.05). A total of 50 cases were complicated by cognitive impairment, and the incidence of cognitive impairment was 60.98%. The levels of IL-6, IL-10, TNF-α, CRP, Cor, and NE in the chronic phase were positively correlated with the concurrent cognitive impairment, and the level of SOD was negatively correlated with the concurrent cognitive impairment (p < 0.05). Single-factor analysis showed that age and levels of IL-6, IL-10, TNF-α, CRP, Cor, and NE were higher in the cognitively impaired group than in the cognitively normal group, SOD levels were lower than in the cognitively normal group, and percentages of below-secondary school and frontal lobe damage were higher than those in the cognitively normal group (p < 0.05). Logistic regression analysis showed that below-secondary school, frontal lobe injury, higher levels of IL-6, IL-10, TNF-α, and CRP in the chronic phase, and lower levels of SOD in the chronic phase were all relevant factors affecting the patients' concurrent cognitive impairment. As shown by the ROC curve, the area under the curve (AUC) for the combination of indicators was 0.949, sensitivity was 0.980, and specificity was 0.844. CONCLUSIONS: The incidence of cognitive impairment is higher in patients with severe craniocerebral injury, and the levels of inflammation and oxidative stress, which are not conducive to recovery, are higher in patients in the acute stage. The risk of concurrent cognitive impairment is higher in patients with a lower level of literacy, frontal lobe injury, and high levels of inflammatory factors and oxidative stress in the chronic stage; these indicators, therefore, have a significant predictive effect on the prognosis of the patients.
Assuntos
Disfunção Cognitiva , Traumatismos Craniocerebrais , Inflamação , Estresse Oxidativo , Humanos , Disfunção Cognitiva/sangue , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/epidemiologia , Feminino , Masculino , Inflamação/sangue , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Traumatismos Craniocerebrais/complicações , Traumatismos Craniocerebrais/sangue , Idoso , Interleucina-10/sangue , Proteína C-Reativa/metabolismoRESUMO
A rare subset of HIV-infected individuals, termed elite controllers (ECs), can maintain long-term control over HIV replication in the absence of antiretroviral therapy (ART). To elucidate the biological mechanism of resistance to HIV replication at the molecular and cellular levels, we performed RNA sequencing and identified alternative splicing variants from ECs, HIV-infected individuals undergoing ART, ART-naive HIV-infected individuals, and healthy controls. We identified differential gene expression patterns that are specific to ECs and may influence HIV resistance, including alternative RNA splicing and exon usage variants of the CREM/ICER gene (cyclic AMP [cAMP]-responsive element modulator/inducible cAMP early repressors). The knockout and knockdown of specific ICER exons that were found to be upregulated in ECs resulted in significantly increased HIV infection in a CD4+ T cell line and primary CD4+ T cells. Overexpression of ICER isoforms decreased HIV infection in primary CD4+ T cells. Furthermore, ICER regulated HIV long terminal repeat (LTR) promoter activity in a Tat-dependent manner. Together, these results suggest that ICER is an HIV host factor that may contribute to the HIV resistance of ECs. These findings will help elucidate the mechanisms of HIV control by ECs and may yield a new approach for treatment of HIV. IMPORTANCE A small group of HIV-infected individuals, termed elite controllers (ECs), display control of HIV replication in the absence of antiretroviral therapy (ART). However, the mechanism of ECs' resistance to HIV replication is not clear. In our work, we found an increased expression of specific, small isoforms of ICER in ECs. Further experiments proved that ICER is a robust host factor to regulate viral replication. Furthermore, we found that ICER regulates HIV LTR promoter activity in a Tat-dependent manner. These findings suggest that ICER is related to spontaneous control of HIV infection in ECs. This study may help elucidate a novel target for treatment of HIV.
Assuntos
Infecções por HIV , Humanos , Fatores de Transcrição , AMP Cíclico/metabolismo , Linhagem Celular , Isoformas de Proteínas , Modulador de Elemento de Resposta do AMP Cíclico/genéticaRESUMO
E1 enzymes activate ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) in the first step of Ub/Ubl conjugation cascades and represent potential targets for therapeutic intervention in cancer and other life-threatening diseases. Here, we report the crystal structure of the E1 enzyme for the Ubl SUMO in complex with a recently discovered and highly specific covalent allosteric inhibitor (COH000). The structure reveals that COH000 targets a cryptic pocket distinct from the active site that is completely buried in all previous SUMO E1 structures and that COH000 binding to SUMO E1 is accompanied by a network of structural changes that altogether lock the enzyme in a previously unobserved inactive conformation. These structural changes include disassembly of the active site and a 180° rotation of the catalytic cysteine-containing SCCH domain, relative to conformational snapshots of SUMO E1 poised to catalyze adenylation. Altogether, our study provides a molecular basis for the inhibitory mechanism of COH000 and its SUMO E1 specificity, and also establishes a framework for potential development of molecules targeting E1 enzymes for other Ubls at a cryptic allosteric site.
Assuntos
Inibidores Enzimáticos/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Regulação Alostérica , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismoRESUMO
Ubiquitin (Ub) signaling plays a key regulatory role in nearly every aspect of eukaryotic biology and is initiated by E1 enzymes that activate and transfer Ub to E2 Ub-conjugating enzymes. Despite Ub E1's fundamental importance to the cell and its attractiveness as a target for therapeutic intervention in cancer and other diseases, its only available structural information is derived from yeast orthologs of human ubiquitin-like modifier-activating enzyme 1 (hUBA1). To illuminate structural differences between yeast and hUBA1 structures that might be exploited for the development of small-molecule therapeutics, we determined the first crystal structure of a hUBA1-Ub complex. Using structural analysis, molecular modeling, and biochemical analysis, we demonstrate that hUBA1 shares a conserved overall structure and mechanism with previously characterized yeast orthologs, but displays subtle structural differences, particularly within the active site. Computational analysis revealed four potential ligand-binding hot spots on the surface of hUBA1 that might serve as targets to inhibit hUBA1 at the level of Ub activation or E2 recruitment or that might potentially be used in approaches such as protein-targeting chimeric molecules. Taken together, our work enhances our understanding of the hUBA1 mechanism, provides an improved framework for the development of small-molecule inhibitors of UBA1, and serves as a stepping stone for structural studies that involve the enzymes of the human Ub system at the level of both E1 and E2.
Assuntos
Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismoRESUMO
E1 enzymes for ubiquitin (Ub) and Ub-like modifiers (Ubls) harbor two catalytic activities that are required for Ub/Ubl activation: adenylation and thioester bond formation. Structural studies of the E1 for the Ubl small ubiquitin-like modifier (SUMO) revealed a single active site that is transformed by a conformational switch that toggles its competency for catalysis of these two distinct chemical reactions. Although the mechanisms of adenylation and thioester bond formation revealed by SUMO E1 structures are thought to be conserved in Ub E1, there is currently a lack of structural data supporting this hypothesis. Here, we present a structure of Schizosaccharomyces pombe Uba1 in which the second catalytic cysteine half-domain (SCCH domain) harboring the catalytic cysteine has undergone a 106° rotation that results in a completely different network of intramolecular interactions between the SCCH and adenylation domains and translocation of the catalytic cysteine 12 Å closer to the Ub C terminus compared with previous Uba1 structures. SCCH domain alternation is accompanied by conformational changes within the Uba1 adenylation domains that effectively disassemble the adenylation active site. Importantly, the structural and biochemical data suggest that domain alternation and remodeling of the adenylation active site are interconnected and are intrinsic structural features of Uba1 and that the overall structural basis for adenylation and thioester bond formation exhibited by SUMO E1 is indeed conserved in Ub E1. Finally, the mechanistic insights provided by the novel conformational snapshot of Uba1 presented in this study may guide efforts to develop small molecule inhibitors of this critically important enzyme that is an active target for anticancer therapeutics.
Assuntos
Modelos Moleculares , Processamento de Proteína Pós-Traducional , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Cisteína/metabolismo , Bases de Dados de Proteínas , Dissulfetos/química , Dissulfetos/metabolismo , Dissulfetos/farmacologia , Ativação Enzimática , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Ligantes , Mutação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Redobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homologia Estrutural de Proteína , Ubiquitina/química , Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genéticaRESUMO
Renal cell carcinoma (RCC) is known for its multidrug resistance. Using data obtained from the cancer transcriptome database Oncomine and the proteome database The Human Protein Atlas, we identified the repression of organic cation transporter OCT2 as a potential factor contributing to oxaliplatin resistance in RCC. By analyzing OCT2 expression in collected patient tissues and commercial tissue microarray specimens, we demonstrated OCT2 repression in RCC at both transcription and protein levels. Epigenetic analysis revealed that the repressed OCT2 promoter in RCC is characterized by hypermethylated CpG islands and the absence of H3K4 methylation. Further mechanistic studies showed that DNA hypermethylation blocked MYC activation of OCT2 by disrupting its interaction with the E-Box motif, which prevented MYC from recruiting MLL1 to catalyze H3K4me3 at the OCT2 promoter and resulted in repressed OCT2 transcription. Targeting this mechanism, we designed a sequential combination therapy and demonstrated that epigenetic activation of OCT2 by decitabine sensitizes RCC cells to oxaliplatin both in vitro and in xenografts. Our study highlights the potential of translating "omics" data into the development of targeted therapies.
Assuntos
Carcinoma de Células Renais/genética , Metilação de DNA/genética , Transportador 2 de Cátion Orgânico/metabolismo , Compostos Organoplatínicos/farmacologia , Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Epigenômica/métodos , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Transportador 2 de Cátion Orgânico/genética , Oxaliplatina , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Análise Serial de TecidosRESUMO
Most human UDP-glucuronosyltransferase (UGT; EC 2.4.1.17) genes contain non-synonymous single nucleotide polymorphisms (nsSNPs) which cause amino acid substitutions. Allelic variants caused by nsSNPs may exhibit absent or reduced enzyme activity. UGT2B7 is one of the most important UGTs that glucuronidates abundant endobiotics and xenobiotics, such as estriol, morphine, and anticancer drugs. Three nsSNPs, UGT2B7*71S (211G>T), UGT2B7*2 (802C>T) and UGT2B7*5 (1192G>A) are observed in the UGT2B7 gene, and they code for allozymes UGT2B7*71S (A71S), UGT2B7*2 (H268Y), and UGT2B7*5 (D398N). UGT2B7 has been observed to form oligomers that affect its enzymatic activity and in this study, we investigated protein-protein interactions among UGT2B7 allozymes wild type (WT), A71S, H268Y and D398N, by performing a systematic quantitative fluorescence resonance energy transfer (FRET) analysis in combination with co-immunoprecipitation assay. Quantitative FRET analysis revealed that UGT2B7 allozymes formed homo- and hetero-dimers and showed distinct features in donor-acceptor distances. Both codon 71 and codon 268 in the N-terminal domain were involved in the dimeric interaction. Co-immunoprecipitation experiments also proved that UGT2B7 allozymes formed stable dimers. The glucuronidation activities of homo- and hetero-dimers were further tested with zidovudine as the substrate. An increase in activity was observed when WT hetero-dimerized with A71S compared with homo-dimers, while both H268Y and D398N impaired the activity of WT and A71S by forming hetero-dimers. In addition, zidovudine glucuronidation activity is associated with FRET distance. These findings provide insights into the consequences of amino acid substitution in UGT2B7 on zidovudine glucuronidation and the association between protein-protein interaction and glucuronidation activity.
Assuntos
Alelos , Dimerização , Variação Genética/efeitos dos fármacos , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Zidovudina/farmacologia , Animais , Linhagem Celular , Variação Genética/fisiologia , Humanos , Células Sf9 , SpodopteraAssuntos
Proteínas de Neoplasias/química , RNA/química , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Estrutura Terciária de Proteína , RNA/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genéticaRESUMO
Benzene, toluene, xylene, and formaldehyde are well-known indoor air pollutants, especially after house decoration. They are also common pollutants in the working places of the plastic industry, chemical industry, and leather industry. It has been reported that these pollutants cause people to be irritated, sick, experience a headache, and be dizzy. They also have the potential to induce asthma, aplastic anemia, and leukemia, even cause abortion or fetus malformation in humans. In this study, the airborne toxicity of benzene, toluene, xylene, and formaldehyde to murine embryonic stem cells (mES cells) were tested using airborne exposure technique to evaluate the mES cell airborne exposure model on embryotoxicity prediction. Briefly, mES cells were cultured on Transwell inserts and were exposed to an airborne surrounding of test chemicals in a chamber for 1 h at 37 degrees C. Cytotoxicity was determined using the MTT assay after further culture for 18 h at 37 degrees C in normal medium. The airborne IC(50) (50% inhibition concentration) of benzene, toluene, xylene, and formaldehyde derived from the fitted dose-response curves were 17,400 +/- 1290, 16,000 +/- 250, 4680 +/- 500, and 620 +/- 310 ppm, respectively. Formaldehyde was found to be the compound most toxic to mES cells compared to benzene homologues. The toxicity data had good correlation with the in vivo data. The results showed that the mES airborne exposure model may be used to predict embryotoxicity of volatile organic compounds.