Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802569

RESUMO

Graft-versus-host disease (GVHD), an immunological disorder that arises from donor T cell activation through recognition of host alloantigens, is the major limitation in the application of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Traditional immunosuppressive agents can relieve GVHD, but they induce serious side effects. It is highly required to explore alternative therapeutic strategy. Human amniotic epithelial stem cells (hAESCs) were recently considered as an ideal source for cell therapy with special immune regulatory property. In this study, we evaluated the therapeutic role of hAESCs in the treatment of GVHD, based on our previous developed cGMP-grade hAESCs product. Humanized mouse model of acute GVHD (aGVHD) was established by injection of huPBMCs via the tail vein. For prevention or treatment of aGVHD, hAESCs were injected to the mice on day -1 or on day 7 post-PBMC infusion, respectively. We showed that hAESCs infusion significantly alleviated the disease phenotype, increased the survival rate of aGVHD mice, and ameliorated pathological injuries in aGVHD target organs. We demonstrated that hAESCs directly induced CD4+ T cell polarization, in which Th1 and Th17 subsets were downregulated, and Treg subset was elevated. Correspondingly, the levels of a series of pro-inflammatory cytokines were reduced while the levels of the anti-inflammatory cytokines were upregulated in the presence of hAESCs. We found that hAESCs regulated CD4+ subset polarization in a paracrine mode, in which TGFß and PGE2 were selectively secreted to mediate Treg elevation and Th1/Th17 inhibition, respectively. In addition, transplanted hAESCs preserved the graft-versus-leukemia (GVL) effect by inhibiting leukemia cell growth. More intriguingly, hAESCs infusion in HSCT patients displayed potential anti-GVHD effect with no safety concerns and confirmed the immunoregulatory mechanisms in the preclinical study. We conclude that hAESCs infusion is a promising therapeutic strategy for post-HSCT GVHD without compromising the GVL effect. The clinical trial was registered at www.clinicaltrials.gov as #NCT03764228.

2.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955866

RESUMO

The loss of photoreceptors is a major event of retinal degeneration that accounts for most cases of untreatable blindness globally. To date, there are no efficient therapeutic approaches to treat this condition. In the present study, we aimed to investigate whether human amniotic epithelial stem cells (hAESCs) could serve as a novel seed cell source of photoreceptors for therapy. Here, a two-step treatment with combined Wnt, Nodal, and BMP inhibitors, followed by another cocktail of retinoic acid, taurine, and noggin induced photoreceptor-like cell differentiation of hAESCs. The differentiated cells demonstrated the morphology and signature marker expression of native photoreceptor cells and, intriguingly, bore very low levels of major histocompatibility complex (MHC) class II molecules and a high level of non-classical MHC class I molecule HLA-G. Importantly, subretinal transplantation of the hAESCs-derived PR-like cells leads to partial restoration of visual function and retinal structure in Royal College of Surgeon (RCS) rats, the classic preclinical model of retinal degeneration. Together, our results reveal hAESCs as a potential source of functional photoreceptor cells; the hAESCs-derived photoreceptor-like cells could be a promising cell-replacement candidate for therapy of retinal degeneration diseases.


Assuntos
Degeneração Retiniana , Âmnio/metabolismo , Animais , Humanos , Células Fotorreceptoras/metabolismo , Ratos , Retina/metabolismo , Degeneração Retiniana/metabolismo , Células-Tronco/metabolismo
3.
Front Cell Dev Biol ; 9: 737242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650985

RESUMO

Age-related macular degeneration (AMD), featured with dysfunction and loss of retinal pigment epithelium (RPE), is lacking efficient therapeutic approaches. According to our previous studies, human amniotic epithelial stem cells (hAESCs) may serve as a potential seed cell source of RPE cells for therapy because they have no ethical concerns, no tumorigenicity, and little immunogenicity. Herein, trichostatin A and nicotinamide can direct hAESCs differentiation into RPE like cells. The differentiated cells display the morphology, marker expression and cellular function of the native RPE cells, and noticeably express little MHC class II antigens and high level of HLA-G. Moreover, visual function and retinal structure of Royal College of Surgeon (RCS) rats, a classical animal model of retinal degeneration, were rescued after subretinal transplantation with the hAESCs-derived RPE like cells. Our study possibly makes some contribution to the resource of functional RPE cells for cell therapy. Subretinal transplantation of hAESCs-RPE could be an optional therapeutic strategy for retinal degeneration diseases.

4.
Cell Transplant ; 29: 963689720908495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32223314

RESUMO

As a refractory fibrosis disease, intrauterine adhesions (IUAs) is defined as fibrosis of the physiological endometrium. Although hysteroscopic adhesiolysis is widely recommended as an effective treatment, prognosis and recurrence remain poor in severe cases. Recently, stem cell therapy has been promoted as a promising treatment for IUAs. The ability of human amniotic epithelial cells (hAECs), emerging as a new candidate for stem cell therapy, to treat IUAs has not been demonstrated. To study the potential effects of hAECs on IUAs, we created an IUA rat model using mechanical injury and injected cultured primary hAECs into the rats' uteri. Next, we observed the morphological structure of endometrial thickness and glands using hematoxylin and eosin staining, and we detected extracellular-matrix collagen deposition using Masson staining. In addition, we performed immunohistochemical staining and reverse-transcription polymerase chain reaction (RT-PCR) to investigate potential fibrosis molecules and angiogenesis factors 7 d after hAECs transplantation. Finally, we detected estrogen receptor (ER) and growth factors via RT-PCR to verify the molecular mechanism underlying cell therapy. In the IUA rat models, endometrial thickness and endometrial glands proliferated and collagen deposition decreased significantly after hAEC transplantation. We found that during the recovery of injured endometrium, the crucial fibrosis marker transforming growth factor-ß (TGF-ß) was regulated and angiogenesis occurred in the endometrial tissue with the up-regulation of vascular endothelial growth factor. Furthermore, hAECs were shown to promote ER expression in the endometrium and regulate the inflammatory reaction in the uterine microenvironment. In conclusion, these results demonstrated that hAEC transplantation could inhibit the progression of fibrosis and promote proliferation and angiogenesis in IUA rat models. The current study suggests hAECs as a novel stem cell candidate in the treatment of severe IUA.


Assuntos
Âmnio/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Epiteliais/fisiologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Modelos Animais de Doenças , Endométrio/metabolismo , Células Epiteliais/citologia , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Útero/metabolismo
5.
Cell Transplant ; 27(10): 1504-1514, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30168350

RESUMO

As a featured ocular inflammatory disease, autoimmune uveitis is the major cause of blindness in the clinic. Although current immunosuppressive regimens can alleviate the progression of autoimmune uveitis, they have serious side effects. Therefore, an alternative therapeutic strategy is urgently required. The present study investigated the therapeutic efficacy of human amniotic epithelial cells (hAECs) on autoimmune uveitis in a rat model. Herein, experimental autoimmune uveitis (EAU) was induced in rats via a subcutaneous injection of interphotoreceptor retinoid-binding protein. EAU rats were treated with hAECs or the vehicle solution via a subretinal injection on day 0 and day 6 after immunization, and rats were sacrificed on day 12 and day 18 for further analysis. The pathological development of EAU was evaluated by slit lamp microscopy. Immune cell infiltration and retinal structure damage were examined by histological examination of hematoxylin and eosin (H&E) and immunofluorescence staining. T-cell subsets were detected by flow cytometry, and the levels of inflammatory cytokines were quantified by enzyme-linked immunosorbent assay (ELISA). hAEC treatment ameliorated the pathological progression of EAU and preserved the retinal structure organization and thickness, especially in the preventive group that received a subretinal injection on day 0. Moreover, hAECs inhibited the retinal infiltration of macrophages and T-cells. Mechanistically, hAECs modulated the balance of T-cell subsets by downregulating T helper (Th)17 cells and upregulating T regulatory (Treg) cells, as confirmed by decreased interleukin (IL)-17 and increased IL-10 levels in the spleens and lymph nodes of EAU rats. Furthermore, hAECs improved the local cytokine environment in EAU rats by suppressing the monocyte chemoattractant protein (MCP)-1, IL-17 and interferon (IFN)-γ levels and enhancing the IL-10 in the aqueous humor. Therefore, subretinal transplantation of hAECs in EAU rats ameliorated ocular inflammation, preserved the retinal structure and coordinated the immune balance. The current study provides a novel therapeutic strategy for autoimmune uveitis and related ocular inflammatory diseases in the clinic.


Assuntos
Âmnio/citologia , Doenças Autoimunes/terapia , Células Epiteliais/transplante , Retina/patologia , Uveíte/terapia , Animais , Doenças Autoimunes/patologia , Células Cultivadas , Células Epiteliais/citologia , Feminino , Humanos , Masculino , Ratos Endogâmicos Lew , Retina/citologia , Uveíte/patologia
6.
Cytotherapy ; 20(10): 1247-1258, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30174233

RESUMO

BACKGROUND AIMS: The chronic inflammation of autoimmune diseases develops repetitive localized destruction or systemic disorders, represented by Hashimoto's thyroiditis (HT) and Systemic lupus erythematosus (SLE) respectively. Currently, there are no efficient ways to treat these autoimmune diseases. Therefore, it is critically important to explore new therapeutic strategies. The aim of this study was to investigate the therapeutic efficacy of human amniotic epithelial cells (hAECs) in murine models of HT and SLE. METHODS: Experimental autoimmune thyroiditis (EAT) was induced in female CBA/J mice by immunization with porcine thyroglobulin (pTg). hAECs were intravenously administered at different time points during the disease course. MRL-Faslpr mice, a strain with spontaneously occurring SLE, were intravenously administered hAECs when their sera were positive for both anti-nuclear antibodies (ANAs) and anti-double-stranded DNA (anti-dsDNA) antibodies. Two weeks after the last cell transplantation, blood and tissue samples were collected for histological examination and immune system analysis. RESULTS: hAECs prevented lymphocytes infiltration into the thyroid and improved the damage of thyroid follicular in EAT mice. Correspondingly, hAECs administration reduced anti-thyroglobulin antibodies (TGAb), anti-thyroid peroxidase antibodies (TPOAb) and thyroid stimulating hormone (TSH) levels. SLE mice injected with hAECs appeared negative for ANAs and anti-dsDNA antibodies and showed reduced immunoglobulin profiles. Mechanically, hAECs modulated the immune cells balance in EAT and SLE mice, by downregulating the ratios of Th17/Treg cells in both EAT and SLE mice and upregulating the proportion of B10 cells in EAT mice. This was confirmed by in vitro assay, in which hAECs inhibited the activation of EAT mice-derived splenocytes. Moreover, hAECs improved the cytokine environment in both EAT and SLE mice, by suppressing the levels of IL-17A and IFN-γ and enhancing TGF-ß. CONCLUSION: These results demonstrated the immunoregulatory effect of hAECs for inflammation inhibition and injury recovery in HT and SLE murine models. The current study may provide a novel therapeutic strategy for these autoimmune diseases in clinic.


Assuntos
Âmnio/citologia , Células Epiteliais/transplante , Doença de Hashimoto/terapia , Lúpus Eritematoso Sistêmico/terapia , Animais , Autoanticorpos/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/imunologia , Feminino , Doença de Hashimoto/imunologia , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Camundongos Endogâmicos CBA , Linfócitos T Reguladores/imunologia , Tireoidite Autoimune/etiologia , Tireoidite Autoimune/terapia , Tireotropina/sangue
7.
Acta Pharmacol Sin ; 39(8): 1305-1316, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29565036

RESUMO

Human amniotic epithelial cells (hAECs), derived from the innermost layer of the term placenta closest to the fetus, have been shown to be potential seed cells for allogeneic cell therapy. Previous studies have shown a certain therapeutic effect of hAECs. However, no appropriate isolation and culture system for hAECs has been developed for clinical applications. In the present study, we established a serum-free protocol for hAEC isolation and cultivation, in which better cell growth was observed compared with that in a traditional culture system with serum. In addition to specific expression of cell surface markers (CD29, CD166 and CD90), characterization of the biological features of hAECs revealed expression of the pluripotent markers SSEA4, OCT4 and NANOG, which was greater than that in human mesenchymal stem cells, whereas very low levels of HLA-DR and HLA-DQ were detected, suggesting the weak immunogenicity of hAECs. Intriguingly, CD90+ hAECs were identified as a unique population with a powerful immunoregulatory capacity. In a systemic safety evaluation, intravenous administration of hAEC did not result in hemolytic, allergy, toxicity issues or, more importantly, tumorigenicity. Finally, the therapeutic effect of hAECs was demonstrated in mice with radiation-induced damage. The results revealed a novel function of hAECs in systemic injury recovery. Therefore, the current study provides an applicable and safe strategy for hAEC cell therapy administration in the clinical setting.


Assuntos
Âmnio/citologia , Células Epiteliais , Transplante de Células-Tronco , Animais , Testes de Carcinogenicidade , Células Cultivadas , Meios de Cultura Livres de Soro , Citocinas/metabolismo , Células Epiteliais/fisiologia , Células Epiteliais/transplante , Feminino , Cobaias , Humanos , Masculino , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos SCID , Gravidez , Cultura Primária de Células , Lesões Experimentais por Radiação/terapia , Ratos Sprague-Dawley , Antígenos Thy-1/metabolismo
8.
Arch Toxicol ; 92(1): 259-272, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28733890

RESUMO

Exposure to high-dose benzene leads to the inhibition of erythroid differentiation. However, whether lower doses of benzene exposure resemble high-dose effects in erythroid differentiation, as well as the underlying mechanisms, remains largely unknown. To identify the microRNAs (miRNAs) specifically responsible for benzene exposure and their regulatory role in erythroid differentiation, we performed miRNA microarray in CD34+ hematopoietic progenitor cells isolated from human umbilical cord blood after treatment with hydroquinone (HQ), a metabolite of benzene at concentrations of 0, 1.0, 2.5, and 5.0 µM. As a result, HQ treatment inhibited erythroid differentiation in a dose-response manner. miRNA microarray analysis revealed that miRNA-451a, miRNA-486-5p and miRNA-126-3p expression were significantly lower in HQ-treated CD34+ hematopoietic progenitor cells. In vitro studies showed that miRNA-451a and miRNA-486-5p were up-regulated during erythroid differentiation both in CD34+ hematopoietic progenitor cells and K562 cells. The increase in the percentage of benzidine-positive cells and the expression of γ-globin in K562 cells transfected with either miRNA-451a or miRNA-486-5p mimic indicated that both miRNAs played a role in the promotion of erythroid cell differentiation. Overexpression of either miRNA-451a or miRNA-486-5p attenuated the inhibitory effects on erythroid differentiation in HQ-treated K562 cells. In vivo study showed a decreasing count of peripheral red blood cell (RBC) in C57BL/6J male mice treated with aerosol benzene at concentrations of 0, 1, 5, 25 ppm (time weight average, TWA). In addition, the expression of miRNA-451a or miRNA-486-5p was negatively correlated with the concentration of benzene inhalation on erythroid toxicity of C57BL/6J mice. Particularly, the decline in miRNA-451a and miRNA-486-5p expression appeared in male chronic benzene poisoning patients, and was correlated with a constant decrease in their RBC counts over the first 3 months after being diagnosed. These findings indicate that the suppression of miRNA-451a or miRNA-486-5p might be associated with the benzene-induced perturbation of erythroid cell differentiation.


Assuntos
Benzeno/toxicidade , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , MicroRNAs/genética , Adulto , Animais , Benzeno/administração & dosagem , Benzeno/intoxicação , Antígenos CD4 , Diferenciação Celular/genética , Relação Dose-Resposta a Droga , Regulação para Baixo/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Hidroquinonas/administração & dosagem , Hidroquinonas/toxicidade , Células K562 , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
9.
Toxicol Res (Camb) ; 5(3): 848-858, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090394

RESUMO

The MiR-146a/TRAF6/NF-κB axis is important for the regulation of hematopoiesis and the immune system. To identify the key axis that regulates benzene-induced hematotoxicity or even leukemia, we investigated miR-146a expression in human CD34+ hematopoietic progenitor cells (HPCs) and human acute promyelocytic leukemia cells (HL-60) during the differentiation process. By performing a colony formation assay and flow cytometry on cells in the differentiation process after hydroquinone treatment, we found that hydroquinone induced a marked reduction of differentiation toward myeloid cells and immune cells in CD34+ cells (5 days exposure) as well as in HL-60 cells (3 h exposure). Further study using real-time PCR and western blot showed that the impaired myeloid differentiation was accompanied by the up-regulation of miR-146a and the down-regulation of TRAF6 and NF-κB. Using the miR-146a-5p inhibitor to suppress miR-146a expression could relieve the inhibitory effect on myeloid differentiation induced by hydroquinone to a certain extent. At the same time, the level of TRAF6 protein, as well as the phosphorylated IκBα protein which indicates NF-κB transcriptional activity was restored to the same levels as the control group. These results suggested that hydroquinone induced a dysregulation of miR-146a and its downstream NF-κB transcriptional factor pathway, which might be an early event in the generation of benzene-induced differentiation disturbance and subsequent leukemogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA