Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 260: 115763, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659196

RESUMO

ProTide prodrug technology has emerged as a promising way for the development of anti-viral and anti-tumor drugs, whereas, there are fewer applications for the treatment of liver cancer. Herein, a series of distinct 3'-ester ProTide prodrugs of 5-fluoro-2'-deoxyuridine (FdUR) were synthesized and evaluated for their anti-liver cancer activity. The most efficient prodrug 11b reached a sub-micromolar activity (IC50 = 0.42 ± 0.13 µM) against HepG2 and over 100-fold and 200-fold improvements compared to 5-FU, respectively. 11b also demonstrated favorable selectivity towards normal liver cells L-02 (IC50 > 100 µM). In vitro metabolic stability studies revealed that 11b is stable in the plasma and could be activated rapidly in the liver, which supported that 11b is liver-targeted. Importantly, to more accurately evaluate the anti-HCC activity of 11b, the liver orthotopic model was built and 11b significantly suppressed tumor growth (TGI = 75.5%) at a dose of 60 mg/kg/2d in vivo without obvious toxicity. Overall, these promising results indicated that 11b could serve as a safe and effective prodrug of 5-FU nucleoside for liver cancer therapy.


Assuntos
Neoplasias Hepáticas , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Desoxiuridina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico
2.
Acta Pharm Sin B ; 13(9): 3744-3755, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719369

RESUMO

The well-known insulin-like growth factor 1 (IGF1)/IGF-1 receptor (IGF-1R) signaling pathway is overexpressed in many tumors, and is thus an attractive target for cancer treatment. However, results have often been disappointing due to crosstalk with other signals. Here, we report that IGF-1R signaling stimulates the growth of hepatocellular carcinoma (HCC) cells through the translocation of IGF-1R into the ER to enhance sarco-endoplasmic reticulum calcium ATPase 2 (SERCA2) activity. In response to ligand binding, IGF-1Rß is translocated into the ER by ß-arrestin2 (ß-arr2). Mass spectrometry analysis identified SERCA2 as a target of ER IGF-1Rß. SERCA2 activity is heavily dependent on the increase in ER IGF-1Rß levels. ER IGF-1Rß phosphorylates SERCA2 on Tyr990 to enhance its activity. Mutation of SERCA2-Tyr990 disrupted the interaction of ER IGF-1Rß with SERCA2, and therefore ER IGF-1Rß failed to promote SERCA2 activity. The enhancement of SERCA2 activity triggered Ca2+ER perturbation, leading to an increase in autophagy. Thapsigargin blocked the interaction between SERCA2 and ER IGF-1Rß and therefore SERCA2 activity, resulting in inhibition of HCC growth. In conclusion, the translocation of IGF-1R into the ER triggers Ca2+ER perturbation by enhancing SERCA2 activity through phosphorylating Tyr990 in HCC.

3.
Acta Pharm Sin B ; 13(7): 2963-2975, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521868

RESUMO

Insulin-like growth factor-1 receptor (IGF-1R) has been made an attractive anticancer target due to its overexpression in cancers. However, targeting it has often produced the disappointing results as the role played by cross talk with numerous downstream signalings. Here, we report a disobliging IGF-1R signaling which promotes growth of cancer through triggering the E3 ubiquitin ligase MEX3A-mediated degradation of RIG-I. The active ß-arrestin-2 scaffolds this disobliging signaling to talk with MEX3A. In response to ligands, IGF-1Rß activated the basal ßarr2 into its active state by phosphorylating the interdomain domain on Tyr64 and Tyr250, opening the middle loop (Leu130‒Cys141) to the RING domain of MEX3A through the conformational changes of ßarr2. The models of ßarr2/IGF-1Rß and ßarr2/MEX3A could interpret the mechanism of the activated-IGF-1R in triggering degradation of RIG-I. The assay of the mutants ßarr2Y64A and ßarr2Y250A further confirmed the role of these two Tyr residues of the interlobe in mediating the talk between IGF-1Rß and the RING domain of MEX3A. The truncated-ßarr2 and the peptide ATQAIRIF, which mimicked the RING domain of MEX3A could prevent the formation of ßarr2/IGF-1Rß and ßarr2/MEX3A complexes, thus blocking the IGF-1R-triggered RIG-I degradation. Degradation of RIG-I resulted in the suppression of the IFN-I-associated immune cells in the TME due to the blockade of the RIG-I-MAVS-IFN-I pathway. Poly(I:C) could reverse anti-PD-L1 insensitivity by recovery of RIG-I. In summary, we revealed a disobliging IGF-1R signaling by which IGF-1Rß promoted cancer growth through triggering the MEX3A-mediated degradation of RIG-I.

4.
Nanomedicine ; 48: 102646, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549559

RESUMO

Synthetic high-density lipoproteins nanomedicine (sHDL) composed of apolipoprotein A-I (ApoA-I) mimetic peptides and lipids have shown very promising results for the treatment of various cardiovascular diseases. Numerous efforts have also been made to design different ApoA-I mimetic peptides to improve the potency of sHDL, especially the efficiency of reverse cholesterol transport. However, the way in which ApoA-I mimetic peptides affect the properties of sHDL, including stability, cholesterol efflux, cholesterol esterification, elimination in vivo, and the relationship of these properties, is still poorly understood. Revealing the effect of these factors on the potency of sHDL is important for the design of better ApoA-I mimetic peptides. In this study, three widely used ApoA-I mimetic peptides with different sequences, lengths, LCAT activation and lipid binding affinities were used for the preparation of sHDL and were evaluated in terms of physical/chemical properties, cholesterol efflux, cholesterol esterification, remodeling, and pharmacokinetics/pharmacodynamics. Our results showed that ApoA-I mimetic peptides with the highest cholesterol efflux and cholesterol esterification in vitro did not exhibit the highest cholesterol mobilization in vivo. Further analysis indicated that other factors, such as pharmacokinetics and remodeling of sHDL, need to be considered in order to predict the efficiency of cholesterol mobilization in vivo. Thus, our study highlights the importance of using the overall performance, rather than in vitro results alone, as the blueprint for the design and optimization of ApoA-I mimetic peptides.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas HDL/química , Apolipoproteína A-I/farmacologia , Apolipoproteína A-I/química , Peptídeos/farmacologia , Peptídeos/química , Colesterol/química , Transporte Biológico
5.
Genes (Basel) ; 13(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140778

RESUMO

The skeletal muscle fiber profile is closely related to livestock meat quality. However, the molecular mechanisms determining muscle fiber types in donkeys are not completely understood. In this study, we selected the psoas major muscle (PM; mainly composed of oxidative-type muscle fibers) and biceps femoris muscle (BF; mainly composed of glycolytic-type muscle fibers) and systematically compared their mRNA and microRNA transcriptomes via RNA-seq. We identified a total of 2881 differentially expressed genes (DEGs) and 21 known differentially expressed miRNAs (DEmiRs). Furthermore, functional enrichment analysis showed that the DEGs were mainly involved in energy metabolism and actin cytoskeleton regulation. The glycolysis/gluconeogenesis pathway (including up-regulated genes such as PKM, LDHA, PGK1 and ALDOA) was more highly enriched in BF, whereas the oxidative phosphorylation pathway and cardiac muscle contraction (including down-regulated genes such as LDHB, ATP2A2, myosin-7 (MYH7), TNNC1, TPM3 and TNNI1) was more enriched in PM. Additionally, we identified several candidate miRNA-mRNA pairs that might regulate muscle fiber types using the integrated miRNA-mRNA analysis. Combined with the results of protein-protein interaction (PPI) analysis, some interesting DEGs (including ACTN3, TNNT3, TPM2, TNNC2, PKM, TNNC1 and TNNI1) might be potential candidate target genes involved in the miRNA-mediated regulation of the myofibril composition. This study is the first to indicate that DEmiRs, especially eca-miR-193a-5p and eca-miR-370, and potential candidate target genes that are mainly involved in actin binding (e.g., ACTN3, TNNT3 and TNNC1) and the glycolysis/gluconeogenesis pathways (e.g., PKM) might coregulate the myofibril composition in donkeys. This study may provide useful information for improving meat quality traits in Dezhou donkeys.


Assuntos
MicroRNAs , Transcriptoma , Actinas/metabolismo , Animais , Equidae/genética , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Miosinas/genética , RNA Mensageiro/genética , Transcriptoma/genética
6.
J Control Release ; 337: 168-178, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34280415

RESUMO

Conventional cancer vaccines based on soluble vaccines and traditional adjuvants have produced suboptimal therapeutic efficacy in clinical trials. Thus, there is an urgent need for vaccine technologies that can generate potent T cell responses with strong anti-tumor efficacy. We have previously reported the development of synthetic high-density protein (sHDL) nanodiscs for efficient lymph node (LN)-targeted co-delivery of antigen peptides and CpG oligonucleotides (a Toll-like receptor-9 agonist). Here, we performed a comparative study in mice and non-human primates (NHPs) to identify an ideal vaccine platform for induction of CD8+ T cell responses. In particular, we compared the efficacy of CpG class B, CpG class C, and polyICLC (a synthetic double-stranded RNA analog, a TLR-3 agonist), each formulated with antigen-carrying sHDL nanodiscs. Here, we report that sHDL-Ag admixed with polyICLC elicited robust Ag-specific CD8+ T cell responses in mice, and when used in combination with α-PD-1 immune checkpoint inhibitor, sHDL-Ag + polyICLC eliminated large established (~100 mm3) MC-38 tumors in mice. Moreover, sHDL-Gag + polyICLC induced robust Simian immunodeficiency virus Gag-specific, polyfunctional CD8+ T cell responses in rhesus macaques and could further amplify the efficacy of recombinant adenovirus-based vaccine. Notably, while both sHDL-Ag-CpG-B and sHDL-Ag-CpG-C generated strong Ag-specific CD8+ T cell responses in mice, their results were mixed in NHPs. Overall, sHDL combined with polyICLC offers a strong platform to induce CD8+ T cells for vaccine applications.


Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Adjuvantes Imunológicos , Animais , Macaca mulatta , Camundongos , Vacinas Sintéticas
7.
Adv Ther (Weinh) ; 3(9)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38317797

RESUMO

Potent anti-tumor T cell response and efficient intratumoral T cell infiltration are the major challenges for therapeutic cancer vaccines. To address these issues, a nano-vaccine system has been designed to promote anti-tumor T cell responses, and intratumoral infiltration was examined in various murine tumor models. Subcutaneous vaccination with nanodiscs carrying human papillomavirus (HPV)-16 E7 antigen elicits as high as ~32% E7-specific CD8 α + T cell responses in circulation, representing a 29-fold improvement over the soluble peptide vaccination. Importantly, nanodisc vaccination also promotes robust intratumoral T cell infiltration and eliminates HPV16 E6/E7-expressing TC-1 tumors at mucosal sites, including lungs, inner lip, and intravaginal tissues. In a benchmark study with a live Listeria vaccine combined with anti-PD-1 IgG, nanodiscs plus anti-PD-1 immune checkpoint blockade elicits comparable levels of T cell responses with anti-tumor efficacy. Furthermore, compared with Complete Freund's Adjuvant combined with tetanus toxoid, nanodisc vaccination in HLA-A02 mice generates >200-fold stronger IFN-γ+ T cell responses against a neoantigen from an HLA-A02 melanoma patient. Overall, these results show that the nanodisc system is a promising cancer vaccine platform for inducing anti-tumor T cell responses.

8.
Int J Nanomedicine ; 14: 3069-3086, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118623

RESUMO

Background: Synthetic HDLs (sHDLs), small nanodiscs of apolipoprotein mimetic peptides surrounding lipid bilayers, were developed clinically for atheroma regression in cardiovascular patients. Formation of HDL involves interaction of apolipoprotein A-I (ApoA-I) with phospholipid bilayers and assembly into lipid-protein nanodiscs. Purpose: The objective of this study is to improve understanding of physico-chemical aspects of HDL biogenesis such as the thermodynamics of ApoA-I-peptide membrane insertion, lipid binding, and HDL self-assembly to improve our ability to form homogeneous sHDL nanodiscs that are suitable for clinical administration. Methods: The ApoA-I-mimetic peptide, 22A, was combined with either egg sphingomyelin (eSM) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid vesicles to form sHDL. The sHDL assembly process was investigated through lipid vehicle solubilization assays and characterization of purity, size, and morphology of resulting nanoparticles via gel permeation chromatography (GPC), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Peptide-lipid interactions involved were further probed by sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The pharmacokinetics of eSM-sHDL and POPC-sHDL nanodiscs were investigated in Sprague Dawley rats. Results: sHDL formation was temperature-dependent, with spontaneous formation of sHDL nanoparticles occurring only at temperatures exceeding lipid transition temperatures as evidenced by DLS, GPC, and TEM characterization. SFG and ATR-FTIR spectroscopy findings support a change in peptide-lipid bilayer interactions at temperatures above the lipid transition temperature. Lipid-22A interactions were stronger with eSM than with POPC, which resulted in the formation of more homogeneous sHDL nanoparticles with longer in vivo circulation time as evidenced the PK study. Conclusion: Physico-chemical characteristics of sHDL are in part determined by phospholipid composition. Optimization of phospholipid composition may be utilized to improve the stability and homogeneity of sHDL.


Assuntos
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/metabolismo , Nanopartículas/química , Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Animais , Apolipoproteína A-I/química , Difusão Dinâmica da Luz , Cinética , Bicamadas Lipídicas/química , Lipoproteínas HDL/química , Masculino , Nanopartículas/ultraestrutura , Peptídeos/química , Peptídeos/farmacocinética , Fosfatidilcolinas/administração & dosagem , Ratos Sprague-Dawley , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Esfingomielinas/administração & dosagem , Termodinâmica , Vibração
9.
J Lipid Res ; 59(7): 1205-1218, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724779

RESUMO

Lysosomal phospholipase A2 (LPLA2) is characterized by broad substrate recognition, peak activity at acidic pH, and the transacylation of lipophilic alcohols, especially N-acetyl-sphingosine. Prior structural analysis of LPLA2 revealed the presence of an atypical acidic residue, Asp13, in the otherwise hydrophobic active site cleft. We hypothesized that Asp13 contributed to the pH profile and/or substrate preference of LPLA2 for unsaturated acyl chains. To test this hypothesis, we substituted Asp13 for alanine, cysteine, or phenylalanine; then, we monitored the formation of 1-O-acyl-N-acetylsphingosine to measure the hydrolysis of sn-1 versus sn-2 acyl groups on a variety of glycerophospholipids. Substitutions with Asp13 yielded significant enzyme activity at neutral pH (7.4) and perturbed the selectivity for mono- and double-unsaturated acyl chains. However, this position played no apparent role in selecting for either the acyl acceptor or the head group of the glycerophospholipid. Our modeling indicates that Asp13 and its substitutions contribute to the pH activity profile of LPLA2 and to acyl chain selectivity by forming part of a hydrophobic track occupied by the scissile acyl chain.


Assuntos
Lisossomos/enzimologia , Fosfolipases A2/metabolismo , Acilação , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Mutação , Fosfolipases A2/química , Fosfolipases A2/genética , Estrutura Terciária de Proteína , Especificidade por Substrato
10.
J Control Release ; 282: 131-139, 2018 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-29702142

RESUMO

Recent studies have shown that certain combinations of Toll-like receptor (TLR) agonists can induce synergistic immune activation. However, it remains challenging to achieve such robust responses in vivo in a manner that is effective, facile, and amenable for clinical translation. Here, we show that MPLA, a TLR4 agonist, and CpG, a TLR9 agonist, can be efficiently co-loaded into synthetic high-density lipoprotein nanodiscs, forming a potent adjuvant system (ND-MPLA/CpG) that can be readily combined with a variety of subunit antigens, including proteins and peptides. ND-MPLA/CpG significantly enhanced activation of dendritic cells, compared with free dual adjuvants or nanodiscs delivering a single TLR agonist. Importantly, mice immunized with physical mixtures of protein antigens ND-MPLA/CpG generated strong humoral responses, including induction of IgG responses against protein convertase subtilisin/kexin 9 (PCSK9), leading to 17-30% reduction of the total plasma cholesterol levels. Moreover, ND-MPLA/CpG exerted strong anti-tumor efficacy in multiple murine tumor models. Compared with free adjuvants, ND-MPLA/CpG admixed with ovalbumin markedly improved antigen-specific CD8+ T cell responses by 8-fold and promoted regression of B16F10-OVA melanoma (P < 0.0001). Furthermore, ND-MPLA/CpG admixed with E7 peptide antigen elicited ~20% E7-specific CD8+ T cell responses and achieved complete regression of established TC-1 tumors in all treated animals. Taken together, our work highlights the simplicity, versatility, and potency of dual TLR agonist nanodiscs for applications in vaccines and cancer immunotherapy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Lipídeo A/análogos & derivados , Oligodesoxirribonucleotídeos/administração & dosagem , Receptor 4 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Vacinas/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Células Cultivadas , Portadores de Fármacos/química , Feminino , Humanos , Imunidade Humoral , Imunização , Imunoterapia , Lipídeo A/administração & dosagem , Lipídeo A/imunologia , Lipídeo A/uso terapêutico , Melanoma/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/química , Oligodesoxirribonucleotídeos/imunologia , Oligodesoxirribonucleotídeos/uso terapêutico , Receptor 4 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Vacinas/imunologia , Vacinas/uso terapêutico
11.
Sci Adv ; 4(4): eaao1736, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29675465

RESUMO

Although immune checkpoint blockade has shown initial success for various cancers, only a small subset of patients benefits from this therapy. Some chemotherapeutic drugs have been reported to induce antitumor T cell responses, prompting a number of clinical trials on combination chemoimmunotherapy. However, how to achieve potent immune activation with traditional chemotherapeutics in a manner that is safe, effective, and compatible with immunotherapy remains unclear. We show that high-density lipoprotein-mimicking nanodiscs loaded with doxorubicin (DOX), a widely used chemotherapeutic agent, can potentiate immune checkpoint blockade in murine tumor models. Delivery of DOX via nanodiscs triggered immunogenic cell death of cancer cells and exerted antitumor efficacy without any overt off-target side effects. "Priming" tumors with DOX-carrying nanodiscs elicited robust antitumor CD8+ T cell responses while broadening their epitope recognition to tumor-associated antigens, neoantigens, and intact whole tumor cells. Combination chemoimmunotherapy with nanodiscs plus anti-programmed death 1 therapy induced complete regression of established CT26 and MC38 colon carcinoma tumors in 80 to 88% of animals and protected survivors against tumor recurrence. Our work provides a new, generalizable framework for using nanoparticle-based chemotherapy to initiate antitumor immunity and sensitize tumors to immune checkpoint blockade.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Nanoestruturas , Nanomedicina Teranóstica , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Imunidade Celular/efeitos dos fármacos , Lipoproteínas HDL/química , Camundongos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Nanomedicina Teranóstica/métodos , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Bioconjug Chem ; 29(3): 771-775, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29485848

RESUMO

While cancer immunotherapy provides new exciting treatment options for patients, there is an urgent need for new strategies that can synergize with immune checkpoint blockers and boost the patient response rates. We have developed a personalized vaccine nanodisc platform based on synthetic high-density lipoproteins for co-delivery of immunostimulatory agents and tumor antigens, including tumor-specific neoantigens. Here we examined the route of delivery, safety profiles, and therapeutic efficacy of nanodisc vaccination against established tumors. We report that nanodiscs administered via the subcutaneous (SC) or intramuscular (IM) routes were well tolerated in mice without any signs of toxicity. The SC route significantly enhanced nanoparticle delivery to draining lymph nodes, improved nanodisc uptake by antigen-presenting cells, and generated 7-fold higher frequency of neoantigen-specific T cells, compared with the IM route. Importantly, when mice bearing advanced B16F10 melanoma tumors were treated with nanodiscs plus anti-PD-1 and anti-CTLA-4 IgG therapy, the combination immunotherapy exerted potent antitumor efficacy, leading to eradication of established tumors in ∼60% of animals. These results demonstrate nanodiscs customized with patient-specific tumor neoepitopes as a safe and powerful vaccine platform for immunotherapy against advanced cancer.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos de Neoplasias/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Imunoterapia/métodos , Nanoestruturas/administração & dosagem , Neoplasias/terapia , Vacinação/métodos , Adjuvantes Imunológicos/uso terapêutico , Animais , Antígenos de Neoplasias/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Injeções Intramusculares , Injeções Subcutâneas , Melanoma Experimental/imunologia , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/uso terapêutico , Neoplasias/imunologia
13.
Nanomedicine ; 13(6): 1869-1878, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28434931

RESUMO

Synthetic high-density lipoprotein nanoparticles (sHDL) are a valuable class of nanomedicines with established animal safety profile, clinical tolerability and therapeutic efficacy for cardiovascular applications. In this study we examined how the scavenger receptor B-I-mediated (SR-BI) tumor-targeting ability of sHDL, long plasma circulation half-life, and small particle size (9.6±0.2nm) impacted sHDL accumulation in SR-BI positive colorectal carcinoma cells, 3D tumor spheroids, and in vivo xenografts. We compared tumor accumulation of sHDL with that of liposomes (LIP, 130.7±0.8nm), pegylated liposomes (PEG-LIP, 101±2nm), and pegylated sHDL (12.1±0.1nm), all prepared with the same lipid components. sHDL penetrated deep (210µm) into tumor spheroids and exhibited 12- and 3-fold higher in vivo solid tumor accumulation, compared with LIP (p<0.01) and PEG-LIP (p<0.05), respectively. These results suggest that sHDL with established human safety possess promising intrinsic tumor-targeted properties.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Lipoproteínas HDL/metabolismo , Lipossomos/química , Nanopartículas/química , Polietilenoglicóis/química , Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Humanos , Tamanho da Partícula , Receptores Depuradores Classe B/metabolismo , Esferoides Celulares , Células Tumorais Cultivadas
14.
J Lipid Res ; 58(1): 124-136, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881716

RESUMO

apoA-I, apoA-I mimetic peptides, and their lipid complexes or reconstituted high-density lipoprotein (HDL) have been studied as treatments for various pathologies. However, consensus is lacking about the best method for administration, by intravenous (IV) or intraperitoneal (IP) routes, and formulation, as an HDL particle or in a lipid-free form. The objective of this study was to systematically examine peptide plasma levels, cholesterol mobilization, and lipoprotein remodeling in vivo following administration of lipid-free apoA-I peptide (22A) or phospholipid reconstituted 22A-sHDL by IV and IP routes. The mean circulation half-life was longer for 22A-sHDL (T1/2 = 6.27 h) than for free 22A (T1/2 = 3.81 h). The percentage of 22A absorbed by the vascular compartment after the IP dosing was ∼50% for both 22A and 22A-sHDL. The strongest pharmacologic response came from IV injection of 22A-sHDL, specifically a 5.3-fold transient increase in plasma-free cholesterol (FC) level compared with 1.3- and 1.8-fold FC increases for 22A-IV and 22A-sHDL-IP groups. Addition of either 22A or 22A-sHDL to rat plasma caused lipoprotein remodeling and appearance of a lipid-poor apoA-I. Hence, both the route of administration and the formulation of apoA-I peptide significantly affect its pharmacokinetics and pharmacodynamics.


Assuntos
Apolipoproteína A-I/administração & dosagem , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Peptídeos/administração & dosagem , Administração Intravenosa , Animais , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/farmacocinética , Humanos , Injeções Intraperitoneais , Peptídeos/metabolismo , Peptídeos/farmacocinética , Ratos
15.
Ann Rheum Dis ; 76(3): 602-611, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27543414

RESUMO

OBJECTIVES: Recent evidence indicates that high-density lipoprotein (HDL) exerts vasculoprotective activities by promoting activating transcription factor 3 (ATF3), leading to downregulation of toll-like receptor (TLR)-induced inflammatory responses. Systemic lupus erythematosus (SLE) is associated with increased cardiovascular disease risk not explained by the Framingham risk score. Recent studies have indicated oxidised HDL as a possible contributor. We investigated the potential mechanisms by which lupus HDL may lose its anti-inflammatory effects and promote immune dysregulation. METHODS: Control macrophages were challenged with control and SLE HDL in vitro and examined for inflammatory markers by real-time qRT-PCR, confocal microscopy, ELISA and flow cytometry. Lupus-prone mice were treated with an HDL mimetic (ETC-642) in vivo and inflammatory cytokine levels measured by real-time qRT-PCR and ELISA. RESULTS: Compared with control HDL, SLE HDL activates NFκB, promotes inflammatory cytokine production and fails to block TLR-induced inflammation in control macrophages. This failure of lupus HDL to block inflammatory responses is due to an impaired ability to promote ATF3 synthesis and nuclear translocation. This inflammation is dependent on lectin-like oxidised low-density lipoprotein receptor 1 (LOX1R) binding and rho-associated, coiled-coil containing protein kinase 1 and 2 (ROCK1/2) kinase activity. HDL mimetic-treated lupus mice showed significant ATF3 induction and proinflammatory cytokine abrogation. CONCLUSIONS: Lupus HDL promotes proinflammatory responses through NFκB activation and decreased ATF3 synthesis and activity in an LOX1R-dependent and ROCK1/2-dependent manner. HDL mimetics should be explored as potential therapies for inflammation and SLE cardiovascular risk.


Assuntos
Fator 3 Ativador da Transcrição/biossíntese , Citocinas/genética , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacologia , Lúpus Eritematoso Sistêmico/sangue , RNA Mensageiro/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/farmacologia , Fator 3 Ativador da Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Amidas/farmacologia , Animais , Células Cultivadas , Feminino , Humanos , Macrófagos , Camundongos , NF-kappa B/metabolismo , Oxirredução , Peptídeos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Esfingomielinas/farmacologia , Baço/citologia , Receptores Toll-Like/metabolismo , Transcrição Gênica/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
16.
AAPS J ; 19(1): 150-160, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27485642

RESUMO

Doxil® is a complex parenteral doxorubicin (DOX) liposome formulation approved by the FDA. For generic doxorubicin liposomes, analyzing the release profile of DOX is important for quality control and comparability studies. However, there is no robust standard drug release assay available for doxorubicin liposomes. In this study, we describe a USP-4 apparatus assay capable of discriminating DOX liposomal formulations based on release profile. Establishment of the assay was hindered by limited DOX release from liposomes in physiological conditions at 37°C. The addition of NH4HCO3 to the release media facilitated DOX release proportionally to the salt concentration added but caused precipitation of released drug in USP-4 apparatus. Precipitation of DOX was avoided by adding hydroxypropyl-cyclodextrin (HP-CD) to the release medium. We optimized conditions for DOX release by varying a number of parameters such as: concentration of HP-CD, testing temperature, and concentration of tested samples. The optimized release medium contained: 100 mM NH4HCO3, 75 mM 2-(N-morpholino) ethanesulfonic acid (MES) and 5% w/v HP-CD, 5% w/v sucrose, 0.02% w/v NaN3 (pH 6). The drug release assay was performed at 45°C. The optimized release assay can discriminate between DOX liposomal formulations of different compositions, physicochemical properties, and prepared by different manufacturing methods. This indicates that the assay could be used to compare DOX release from generic DOX formulations to the innovator product Doxil®.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/análogos & derivados , Tecnologia Farmacêutica/instrumentação , Antibióticos Antineoplásicos/normas , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Doxorrubicina/química , Doxorrubicina/normas , Composição de Medicamentos , Liberação Controlada de Fármacos , Lipossomos , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/normas , Solubilidade , Tecnologia Farmacêutica/normas
17.
J Lipid Res ; 56(9): 1727-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26117661

RESUMO

The goal of this study was to understand how the reconstituted HDL (rHDL) phospholipid (PL) composition affects its cholesterol efflux and anti-inflammatory properties. An ApoA-I mimetic peptide, 5A, was combined with either SM or POPC. Both lipid formulations exhibited similar in vitro cholesterol efflux by ABCA1, but 5A-SM exhibited higher ABCG1- and SR-BI-mediated efflux relative to 5A-POPC (P < 0.05). Injection of both rHDLs in rats resulted in mobilization of plasma cholesterol, although the relative potency was 3-fold higher for the same doses of 5A-SM than for 5A-POPC. Formation of preß HDL was observed following incubation of rHDLs with both human and rat plasma in vitro, with 5A-SM inducing a higher extent of preß formation relative to 5A-POPC. Both rHDLs exhibited anti-inflammatory properties, but 5A-SM showed higher inhibition of TNF-α, IL-6, and IL-1ß release than did 5A-POPC (P < 0.05). Both 5A-SM and 5A-POPC showed reduction in total plaque area in ApoE(-/-) mice, but only 5A-SM showed a statistically significant reduction over placebo control and baseline (P < 0.01). The type of PL used to reconstitute peptide has significant influence on rHDL's anti-inflammatory and anti-atherosclerosis properties.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Inflamação/metabolismo , Esfingomielinas/metabolismo , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipoproteínas HDL/metabolismo , Camundongos , Peptídeos/administração & dosagem , Fosfatidilcolinas/administração & dosagem , Fosfolipídeos/metabolismo , Ratos
18.
J Biomed Nanotechnol ; 10(8): 1563-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25016656

RESUMO

The development of highly efficient tumor-targeted delivery systems is crucial for successful tumor treatment. Previously, a novel cell-penetrating peptide TAT and cleavable polyethylene glycol (PEG) co-modified liposome delivery system (C-TAT-Lipo) showed enhanced accumulation in tumor regions. Under the control of cysteine (Cys), the liposomes were activated extracellularly and achieved increased delivery of their cargo into tumor cells efficiently. In this study, we developed an optimal formulation for the encapsulation of Doxorubicin (DOX) by this delivery system for tumor treatment. The in vitro study showed that the C-TAT-Lipo with Cys delivery system not only enhanced the amount of DOX delivered by at least 100% compared to other DOX-containing formulations, but also displayed high cytotoxicity against tumorigenic cell lines. Compared to other groups, the DOX-loaded C-TAT-Lipo formulation in the presence of cysteine enhanced treatment efficacy by lowering the IC50 (1.67 +/- 0.14 microM) and increasing the cancer cell apoptosis percentage (37.10%). Moreover, the in vivo antitumor activity also showed that DOX-loaded C-TAT-Lipo with injection of cysteine achieved the best tumor growth inhibition with a tumor growth rate of only 58.40 +/- 16.33% (% of initial volume/day), which was significant less than that achieved by other DOX formulations.


Assuntos
Antineoplásicos/farmacocinética , Peptídeos Penetradores de Células/farmacocinética , Doxorrubicina/farmacocinética , Lipossomos/farmacocinética , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Lipossomos/química , Lipossomos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Distribuição Tecidual
19.
Int J Pharm ; 454(1): 31-40, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23850793

RESUMO

This study was mainly focused on developing a dual-ligand liposomal delivery system to enhance both targeting specificity and cellular uptake. The specific ligand transferrin (TF) and the cationic cell-penetrating peptide TAT were connected with cholesterol via a polyethylene glycol (PEG) spacer to prepare the dual-ligand liposomes (TAT/TF-PEG-LP). Then the in vitro cellular uptake by three kinds of cells that possessed different expressing levels of transferrin receptor (TFR) and the in vivo delivery efficiency were evaluated. Compared to the single-ligand TAT or TF modified liposomes (TAT-PEG-LP or TF-PEG-LP), TAT/TF-PEG-LP exhibited the enhanced cellular uptake and selectivity via the synergistic effect of both ligands in vitro. The ex vivo fluorescence imaging of tumors, the qualitative observation of tumor frozen section and the quantitative determination of cellular uptake in tumor tissues altogether showed the in vivo delivery efficiency of TAT/TF-PEG-LP was higher than that of other liposomes. In conclusion, the dual-ligand liposomes co-modified with TF and TAT possessed a strong capability for synergistic targeted delivery of payload into tumor cells both in vitro and in vivo.


Assuntos
Colesterol/metabolismo , Sistemas de Liberação de Medicamentos , Fragmentos de Peptídeos/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Transporte Biológico , Permeabilidade da Membrana Celular , Colesterol/química , Feminino , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligantes , Lipossomos , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Polietilenoglicóis/química , Tecnologia Farmacêutica/métodos , Transferrina/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
20.
J Drug Target ; 20(3): 235-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22188312

RESUMO

The cell penetrating peptide TAT, which appears to enter cells with alacrity, can pass through the BBB efficiently. It has been indentified to enhance the brain delivery of the liposome. However, little was known about its mechanism. TAT contains a basic region consisting of six arginine and two lysine residues. These eight basic amino acids seem to be the key to its highly efficient membrane translocation and brain delivery. In this study, four selected peptides are synthesized. (1) TAT peptide with terminal Cysteine (Cys-AYGRKKRRQRRR). (2) TAT peptide with disordered sequence (Cys-RKARYRGRKRQR). (3) Glycine and glutamic acid substituted TAT peptide (Cys-AYGGQQGGQGGG). (4) R8 (Cys-RRRRRRRR). Liposomes were chosen as the delivery vehicle. The peptide was covalently bonded with the liposome. We compare four peptides for their brain targeting potential, and investigate their ability to target liposomes to the brain in vitro and in vivo. The cellular uptake of these four liposomes by brain capillary endothelial cells (BCECs) of rats and C6s and the mechanism of the pathway of endocytosis were explored. Biodistribution in vivo was also investigated qualitatively and quantitatively. The results showed that the charge of the peptide played an important role in enhancing its brain delivery. The sequence had little to do with its membrane translocation and brain delivery indicated there might be no specific receptor or transporter for the Tat peptide.


Assuntos
Barreira Hematoencefálica/metabolismo , Peptídeos Penetradores de Células/metabolismo , Sistemas de Liberação de Medicamentos , Substituição de Aminoácidos , Animais , Transporte Biológico , Barreira Hematoencefálica/citologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/efeitos adversos , Peptídeos Penetradores de Células/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/efeitos adversos , Endocitose/efeitos dos fármacos , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Indicadores e Reagentes/administração & dosagem , Indicadores e Reagentes/farmacocinética , Lipossomos , Camundongos , Camundongos Endogâmicos , Fragmentos de Peptídeos/química , Distribuição Aleatória , Ratos , Distribuição Tecidual , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA