Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 975: 176634, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710356

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with immune dysregulation affecting colon inflammatory response. Recent studies have highlighted that neutrophil extracellular traps (NETs) play an important role in the pathogenesis of UC. Berbamine (BBM), one of the bioactive ingredients extracted from Chinese herbal medicine Berberis vulgaris L, has attracted intensive attentions due to its significant anti-inflammatory activity and a marketing drug for treating leukemia in China. However, the exact role and potential molecular mechanism of BBM against UC remains elusive. In the present study, our results showed that BBM could markedly improve the pathological phenotype and the colon inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. Then, comprehensive approaches combining network pharmacology and molecular docking analyses were employed to predict the therapeutic potential of BBM in treating UC by peptidyl-arginine deiminase 4 (PAD4), a crucial molecule involved in NETs formation. The molecular docking results showed BBM had a high affinity for PAD4 with a binding energy of -9.3 kcal/mol Moreover, PAD4 expression and NETs productions, including citrullination of histone H3 (Cit-H3), neutrophil elastase (NE), myeloperoxidase (MPO) in both neutrophils and colonic tissue were reduced after BBM administration. However, in the mice with DSS-induced colitis pretreated with GSK484, a PAD4-specific inhibitor, BBM could not further reduce disease related indexes, expression of PAD4 and NETs productions. Above all, the identification of PAD4 as a potential target for BBM to inhibit NETs formation in colitis provides novel insights into the development of BBM-derived drugs for the clinical management of UC.


Assuntos
Benzilisoquinolinas , Sulfato de Dextrana , Armadilhas Extracelulares , Simulação de Acoplamento Molecular , Proteína-Arginina Desiminase do Tipo 4 , Animais , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Camundongos , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Benzilisoquinolinas/química , Masculino , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia , Colite/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Modelos Animais de Doenças
2.
J Ethnopharmacol ; 333: 118260, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685367

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wumei Wan (WMW), a traditional Chinese medicine prescription, has been proved to be effective in treating Colitis-associated colorectal cancer (CAC), but it has not been proven to be effective in different stages of CAC. AIM OF THE STUDY: The purpose of our study is to investigate the therapeutic effect and mechanism of WMW on the progression of CAC. MATERIALS AND METHODS: Azioximethane (AOM) and dextran sulfate sodium (DSS) were used to treat mice for the purpose of establishing CAC models. WMW was administered in different stages of CAC. The presentative chemical components in WMW were confirmed by LC-MS/MS under the optimized conditions. The detection of inflammatory cytokines in the serum and colon of mice were estimated by qRT-PCR and ELISA. The changes of T cells and myeloid-derived suppressor cells (MDSCs) in each group were detected by flow cytometry. The metabolic components in serum of mice were detected by UPLC-MS/MS. Expression of genes and proteins were detected by eukaryotic transcriptomics and Western blot to explore the key pathway of WMW in preventing CAC. RESULTS: WMW had significant effect on inhibiting inflammatory responses and tumors during the early development stage of CAC when compared to other times. WMW increased the length of mice's colons, reduced the level of IL-1ß, IL-6, TNF-α in colon tissues, and effectively alleviated colonic inflammation, and improved the pathological damage of colon tissues. WMW could significantly reduce the infiltration of MDSCs in the spleen, increase CD4+ T cells and CD8+ T cells in the spleen of CAC mice, and effectively reform the immune microenvironment in CAC mice. Transcriptomics analysis revealed that 2204 genes had different patterns of overlap in the colon tissues of mice between control group, AOM + DSS group, and early administration of WMW group. And KEGG enrichment analysis showed that PI3K/Akt signaling pathway, ECM-receptor interaction, IL-17 signaling pathway, MAPK signaling pathway, pancreatic secretion, thermogenesis, and Rap1 signaling pathway were all involved. The serum metabolomics results of WMW showed that the metabolic compositions of the control group, AOM + DSS group and the early stage of WMW were different, and 42 differential metabolites with the opposite trends of changes were screened. The metabolic pathways mainly included pyrimidine metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, and purine metabolism. And amino acids and related metabolites may play an important role in WMW prevention of CAC. CONCLUSION: WMW can effectively prevent the occurrence and development of CAC, especially in the initial stage. WMW can reduce the immune infiltration of MDSCs in the early stage. Early intervention of WMW can improve the metabolic disorder caused by AOM + DSS, especially correct the amino acid metabolism. PI3K/Akt signaling pathway was inhabited in early administration of WMW, which can regulate the amplification and function of MDSCs.

3.
J Hazard Mater ; 466: 133653, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301443

RESUMO

Cadmium-contaminated water and food are seriously hazardous to the human health, especially liver injury. To understand the entanglement relationship between cadmium ion (Cd2+)-induced liver injury and the biomarker sulfur dioxide (SO2), a reliable bioanalytical tool is urgently needed, detecting SO2 to diagnose and evaluate the extent of liver injury in vivo. Herein, based on the Förster resonance energy transfer (FRET) mechanism, a novel SO2-tunable NIR ratiometric fluorescent probe (SMP) was developed, it was used to diagnose and treat liver injury induced by Cd2+ in biosystems. Specifically, it was constructed by conjugating a NIR dicyanoisophorone with a NIR benzopyranate as the donor and acceptor, respectively, and the ratiometric response of SO2- regulated by the Michael addition reaction. In addition, SMP exhibits rapid reaction time (<15 s), two well-resolved emission peaks (68 nm) with less cross-talk between channels for high imaging resolution, superior selectivity, and low limit of detection (LOD=80.3 nM) for SO2 detection. Impressively, SMP has been successfully used for intracellular ratiometric imaging of Cd2+-induced SO2 and diagnostic and therapeutic evaluation in liver injury mice models with satisfactory results. Therefore, SMP may provide a powerful molecular tool for revealing the occurrence and development relationship between SO2 and Cd2+-induced liver injury. ENVIRONMENTAL IMPLICATION: Cadmium ions are one of the well-known toxic environmental pollutants, which are enriched in the human body through inhalation of cadmium-contaminated air or from the food chain, leading to damage in various organs, especially liver injury. Therefore, we developed a novel fluorescent probe that can specifically detect SO2 in Cd2+-induced liver injury, which is critically important for the diagnosis and evaluation of Cd2+-induced liver injury diseases. The specific detection of SO2 of this probe has been successfully demonstrated in live HepG2 cells and Cd2+-induced liver injury mice.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Corantes Fluorescentes , Camundongos , Humanos , Animais , Cádmio/toxicidade , Células Hep G2 , Dióxido de Enxofre/toxicidade , Células HeLa
4.
Water Res ; 253: 121326, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377928

RESUMO

Cadmium (Cd) is a widespread and highly toxic environmental pollutant, seriously threatening animal and plant growth. Therefore, monitoring and employing robust tools to enrich and remove Cd from the environment is a major challenge. In this work, by conjugating a fluorescent indicator (CCP) with a functionalized glass slide, a special composite material (CCPB) was constructed to enrich, remove, and monitor Cd2+ in water rapidly. Then Cd2+ could be effectively eluted by immersing the Cd-enriched CCPB in an ethylenediaminetetraacetic acid (EDTA) solution. With this, the CCPB was continuously reused. Its recovery of Cd2+was above and below 100 % after multiple uses by flame atomic absorption spectrometry (FAAS), which was excellent for practical use in enriching and removing Cd2+ in real aqueous samples. Therefore, CCPB is an ideal material for monitoring, enriching, and removing Cd2+ in wastewater, providing a robust tool for future practical applications of Cd enrichment and removal in the environment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cádmio/análise , Água/química , Ácido Edético/química , Águas Residuárias , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise , Espectrofotometria Atômica/métodos , Adsorção
5.
Int J Oncol ; 64(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38214378

RESUMO

Long­stranded non­coding RNAs (lncRNAs) are RNAs that consist of >200 nucleotides. The majority of lncRNAs do not encode proteins but have been revealed to mediate a variety of important physiological functions. Antisense­lncRNAs (AS­lncRNAs) are transcribed from the opposite strand of a protein or non­protein coding gene as part of the antisense strand of the coding gene. AS­lncRNAs can serve an important role in the tumorigenesis, prognosis, metastasis and drug resistance of a number of malignancies. This has been reported to be exerted through various mechanisms, such as endogenous competition, promoter interactions, direct interactions with mRNAs, acting as 'scaffolds' to regulate mRNA half­life, interactions with 5­untranslated regions and regulation of sense mRNAs. AS­lncRNAs have been found to either inhibit or promote tumor aggressiveness by regulating cell proliferation, energy metabolism, inflammation, inflammatory­carcinoma transformation, invasion, migration and angiogenesis. In addition, accumulating evidence has documented that AS­lncRNAs can regulate tumor therapy resistance. Therefore, targeting aberrantly expressed AS­lncRNAs for cancer treatment may prove to be a promising approach to reverse therapy resistance. In the present review, research advances on the role of AS­lncRNAs in tumor occurrence and development were summarized, with the aim of providing novel ideas for further research in this field.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias/genética , Regulação Neoplásica da Expressão Gênica
6.
Environ Res ; 236(Pt 2): 116769, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517500

RESUMO

Considering the formidable explosive power and human carcinogenicity of nitroaromatic explosives, the implementation of an accurate and sensitive detection technology is imperative for ensuring public safety and monitoring post-blast environmental contamination. In the present work, a versatile and selective electrochemical sensor based on dummy molecularly imprinted poly (3,4-ethylenedioxythiophene)/laser-induced graphene (MIPEDOT/LIG) was successfully developed and the specific detection of multiple nitroaromatic explosives was realized in the single sensor. The accessible and nontoxic trimesic acid (TMA) and superior 3, 4-ethylenedioxythiophene (EDOT) were selected as the dummy-template and the functional monomer, respectively. The interaction between the functional monomer and the template, and the morphology, electrochemical properties and detection performance of the sensor were comprehensively investigated by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. Benefiting from the alliance of TMA and EDOT, the MIPEDOT/LIG sensor manifested outstanding selectivity and sensitivity for 2,4,6-trinitrotolueen (TNT), 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrophenol (DNP), and 1,3-dinitrobenzene (DNB) (representative nitroaromatic explosives) with limits of determination of 1.95 ppb, 3.06 ppb, 2.49 ppb, 1.67 ppb, 1.94 ppb, and 4.56 ppb, respectively. The sensor also exhibited extraordinary reliability and convenience for environmental sample detection. Therefore, a perfect combination of versatility and selectivity in the MIPEDOT/LIG sensor was achieved. The findings of this work provide a new direction for the development of multi-target electrochemical sensors using a versatile dummy template for explosives detection.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123178, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499473

RESUMO

Abiotic stress and oxidative stress are closely related to the health status of plants. Plants will produce oxidative stress under abiotic stress, induce mitochondrial dysfunction, cause programmed cell death, and decrease plant survival rate. It is well known that rice is an essential crop for humans, but its cadmium tolerance is poor. Therefore, it is crucial to determine whether cadmium stress causes oxidative stress in rice in order to guide rice cultivation. Hydrogen peroxide (H2O2), a highly reactive oxygen species (ROS), is one of the most critical signals in corps under oxidative stress. In this work, we adopted a near-infrared (NIR) H2O2 fluorescent probe YFE-1 and a cadmium ion (Cd2+) fluorescent probe SCP to observe the fluctuation of H2O2 in rice roots under Cd2+ co-incubation conditions. Due to the advantages of fast response (within 2 min), a large Stokes shift (181 nm), good selectivity, and a low detection limit (LOD:26.4 nM), YFE-1 achieved the visualization of H2O2 produced by Cd2+ stress in rice roots. This study provides a new idea for assessing the risk of oxidative stress of Cd2+ in rice roots. It is expected to guide the control of Cd2+ in the rice planting industry to improve rice yield.


Assuntos
Cádmio , Oryza , Humanos , Cádmio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Corantes Fluorescentes/metabolismo , Fluorescência , Estresse Oxidativo , Antioxidantes/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo
8.
Acta Pharm Sin B ; 13(2): 775-786, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873182

RESUMO

The typical hallmark of tumor evolution is metabolic dysregulation. In addition to secreting immunoregulatory metabolites, tumor cells and various immune cells display different metabolic pathways and plasticity. Harnessing the metabolic differences to reduce the tumor and immunosuppressive cells while enhancing the activity of positive immunoregulatory cells is a promising strategy. We develop a nanoplatform (CLCeMOF) based on cerium metal-organic framework (CeMOF) by lactate oxidase (LOX) modification and glutaminase inhibitor (CB839) loading. The cascade catalytic reactions induced by CLCeMOF generate reactive oxygen species "storm" to elicit immune responses. Meanwhile, LOX-mediated metabolite lactate exhaustion relieves the immunosuppressive tumor microenvironment, preparing the ground for intracellular regulation. Most noticeably, the immunometabolic checkpoint blockade therapy, as a result of glutamine antagonism, is exploited for overall cell mobilization. It is found that CLCeMOF inhibited glutamine metabolism-dependent cells (tumor cells, immunosuppressive cells, etc.), increased infiltration of dendritic cells, and especially reprogrammed CD8+ T lymphocytes with considerable metabolic flexibility toward a highly activated, long-lived, and memory-like phenotype. Such an idea intervenes both metabolite (lactate) and cellular metabolic pathway, which essentially alters overall cell fates toward the desired situation. Collectively, the metabolic intervention strategy is bound to break the evolutionary adaptability of tumors for reinforced immunotherapy.

9.
Biochem Soc Trans ; 50(1): 597-607, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35212367

RESUMO

Myosins, a class of actin-based motor proteins existing in almost any organism, are originally considered only involved in driving muscle contraction, reshaping actin cytoskeleton, and anchoring or transporting cargoes, including protein complexes, organelles, vesicles. However, accumulating evidence reveals that myosins also play vital roles in viral infection, depending on viral species and infection stages. This review systemically summarizes the described various myosins, the performed functions, and the involved mechanisms or molecular pathways during viral infection. Meanwhile, the existing issues are also discussed. Additionally, the important technologies or agents, including siRNA, gene editing, and myosin inhibitors, would facilitate dissecting the actions and mechanisms for described and undescribed myosins, which could be adopted to prevent or control viral infection are also characterized.


Assuntos
Miosinas , Viroses , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Humanos , Miosinas/metabolismo , Organelas/metabolismo , Viroses/metabolismo
10.
Biomed Pharmacother ; 125: 109982, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32119646

RESUMO

BACKGROUND: Colorectal cancer (CRC) has a high incidence and mortality rate worldwide. Colitis-associated CRC (CAC) is used for describing the relationship between inflammation and CRC. No chemopreventive agents have been found to be both effective and safe in CRC. Therefore, the prevention and treatment of CAC are extremely urgent. Wu Mei Wan (WMW) has been used for the clinical treatment of enteritis with a remarkable efficacy. Here, we aim to investigate the underlying mechanism of WMW in the prevention of CAC. METHODS: The AOM/DSS-induced CAC mouse model was used, and the mice were divided into normal control (NC), AOM/DSS model control (MC), and AOM/DSS plus WMW (WMW). The weight of mice, the score of DAI, survival rate, number of tumors and sample collection were performed at the end of the 14th week. Histopathological examination was performed using Hematoxylin-Eosin (HE) staining. Tumor cell proliferation was indicated by the expression of PCNA, and p65 and p-STAT3 were detected by immunohistochemistry. Serum IL-6 levels were detected by enzyme-linked immunosorbent assay (ELISA). The expression of p65, IL-6 and p-STAT3 in the colon was detected by Western Blot. Intestinal flora was analyzed by 16S rDNA sequencing. RESULTS: WMW improved the survival rate of mice in the MC group and also attenuated CAC symptoms such as abnormal clinical colitis and pathological changes to intestinal tissue by reducing DAI score, tumor formation, tumor volume, and grade of tumorigenesis. WMW also reduced the proliferation of tumor cells in colon tissues. WMW decreased the expression of p65, IL-6, and p-STAT3 in colon tumors of CAC mice. WMW decreased Bacteroidetes and increased Firmicutes at the phylum level, while decreasing bacteroidales_s24-7_group and increasing the number of Lachnospiraceae at the family level. CONCLUSION: WMW attenuates CAC by regulating the balance between "tumor-promoting bacteria" and "tumor-suppressing bacteria" and the NF-kB/IL-6/STAT3 pathway. WMW has the potential to be a safe and effective chemopreventive drug but further clinical evidence is necessary.


Assuntos
Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Colite/complicações , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Camundongos , Gradação de Tumores
11.
Materials (Basel) ; 12(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781433

RESUMO

The transformation mechanism of reverted austenite and the amount of reverted austenite during the tempering process in supermartensitic stainless steel have been investigated by X-ray diffraction (XRD), electron backscattered diffraction (EBSD), and a high-temperature laser scanning confocal microscope (HTLSCM). The results indicate that the microstructure mainly consists of tempered martensite and reverted austenite. The reverted austenite nucleates uniformly at the sub-block boundary and prior grain austenite boundary. The amount of reverted austenite strongly relies on the tempering time, showing a positive correlation in the supermartensitic stainless steel. The crystallographic orientation relationship between reverted austenite and martensite meets the Kurdjumov-Sachs(K-S) relationship and the deviation angle is mainly concentrated at about 2 degrees. The mechanism of reverted austenite transformed from martensite is a diffusion mechanism. The growth kinetics of the reverted austenite are dominated by diffusion of the Ni element and there is no shear deformation of the martensite matrix in the in situ observation. It can be deduced that the reverted austenite is formed by nickel diffusion during tempering at 620 °C for different tempering times.

12.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27094551

RESUMO

BACKGROUND: Lysophosphatidic acid receptor 1 and Rho/ROCK signaling is implicated in bone cancer pain development. However, it remains unknown whether the two signaling pathways function together in P2X3 receptor-mediated bone cancer pain. RESULTS: In this study, using a rat model of bone cancer, we examined the expression of P2X3 and lysophosphatidic acid receptor 1 in rat dorsal root ganglion neurons and further dissected whether lysophosphatidic acid receptor 1 and Rho/ROCK-mediated pathways interacted in modulating rat pain behavior. Bone cancer was established by inoculating Walker 256 cells into the left tibia of female Wistar rats. We observed a gradual and yet significant decline in mean paw withdrawal threshold in rats with bone cancer, but not in control rats. Our immunohistochemical staining revealed that the number of P2X3- and lysophosphatidic acid receptor 1-positive dorsal root ganglion neurons was significantly greater in rats with bone cancer than control rats. Lysophosphatidic acid receptor 1 blockade with VPC32183 significantly attenuated decline in mean paw withdrawal threshold. Flinching behavior test further showed that lysophosphatidic acid receptor 1 inhibition with VPC32183 transiently but significantly attenuated α,ß-meATP-induced increase in paw lift time per minute. Rho inhibition by intrathecal BoTXC3 caused a rapid reversal in decline in mean paw withdrawal threshold of rats with bone cancer. Flinching behavior test showed that BoTXC3 transiently and significantly attenuated α,ß-meATP-induced increase in paw lift time per minute. Similar findings were observed with ROCK inhibition by intrathecal Y27632. Furthermore, VPC32183 and BoTXC3 effectively aborted the appearance of lysophosphatidic acid-induced calcium influx peak. CONCLUSIONS: Lysophosphatidic acid and its receptor LPAR1, acting through the Rho-ROCK pathway, regulate P2X3 receptor in the development of both mechanical and spontaneous pain in bone cancer.


Assuntos
Neoplasias Ósseas/metabolismo , Dor do Câncer/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Trifosfato de Adenosina/análogos & derivados , Animais , Neoplasias Ósseas/patologia , Cálcio/metabolismo , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Ratos Wistar
13.
Food Chem ; 173: 274-82, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25466023

RESUMO

The objective of this study was to assess the effect of different extraction methods on oil yield, colour attributes, oxidative stability, fatty acids composition and production of volatile compounds in sturgeon oil during storage. The supercritical fluid extraction (SFE) method with carbon dioxide resulted in higher oil yields, better colour attributes, and higher oxidative stability compared to other traditional extraction methods such as enzymatic extraction, amino, and wet reduction. After storage at 4 °C for 33 days, the aldehyde content in oil extracted by the enzymatic extraction and wet reduction methods was twice as high as that obtained by the other methods. There was a significant reduction in the content of total acids in oils extracted by the enzymatic extraction and wet reduction methods (p<0.05), whereas amine compounds were mainly detected in oil extracted by the amino method. The oil extracted by SFE exhibited higher UFA and lower SFA. Significant diffidence among PUFA with C above 20 was observed in oil extracted with SFE.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Óleos de Peixe/química , Manipulação de Alimentos/métodos , Armazenamento de Alimentos , Dióxido de Carbono/química , Ácidos Graxos/análise , Qualidade dos Alimentos , Oxirredução , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Compostos Orgânicos Voláteis/análise
14.
Eur J Anaesthesiol ; 31(1): 30-4, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23736095

RESUMO

BACKGROUND: Multiple factors are involved in the mechanism of bone cancer pain. Treatment with a single drug is not adequate to target all of the different mechanisms. OBJECTIVE: To study the analgesic effect of a combination of low-dose dexmedetomidine (DEX) and tramadol (TRA) on bone cancer pain in rats. DESIGN: A randomised, controlled study. SETTING: Central Laboratory of Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai China, from July 2011 to June 2012. ANIMALS: Adult female Wistar rats weighing 180 to 200g. INTERVENTIONS: Rats with bone cancer were divided into five groups based on drug treatment (n=12 for each group): T5 group (TRA 5 mg kg), T10 group (TRA 10 mg kg), D1 group (DEX 1 µg kg), T5+D1 group (TRA 5 mg kg+DEX 1µg kg) and IS (isotonic saline 0.5 ml) group. MAIN OUTCOME MEASURES: The mechanical threshold and spontaneous paw withdrawal were measured in all groups. RESULTS: Both the T5+D1 group and T10 group showed a significantly increased mechanical threshold and a lower incidence of spontaneous paw withdrawal compared with the IS group. Interestingly, there was no significant difference between the T5+D1 and T10 groups. CONCLUSION: We found that a combination of DEX and TRA at low doses provided equal or superior analgesic effects on bone cancer pain compared to high-dose TRA alone. Our animal data might indicate the clinical administration of these two drugs in bone cancer pain therapy.


Assuntos
Analgésicos/administração & dosagem , Neoplasias Ósseas/fisiopatologia , Dexmedetomidina/administração & dosagem , Dor Intratável/tratamento farmacológico , Tramadol/administração & dosagem , Animais , Quimioterapia Combinada , Feminino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA