Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 204: 115238, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055382

RESUMO

The rapid fall in blood pressure following unclipping of the stenotic renal artery in the Goldblatt two-kidney one-clip (2K1C) model of renovascular hypertension is proposed to be due to release of renomedullary vasodepressor lipids, but the mechanism has remained unclear. In this study, we hypothesized that the hypotensive response to unclipping is mediated by exosomes released from the renal medulla. In male C57BL6/J mice made hypertensive by the 2K1C surgery, unclipping of the renal artery after 10 days decreased mean arterial pressure (MAP) by 23 mmHg one hr after unclipping. This effect was accompanied by a 556% increase in the concentration of exosomes in plasma as observed by nanoparticle tracking analysis. Immunohistochemical analysis of exosome markers, CD63 and AnnexinII, showed increased staining in interstitial cells of the inner medulla of stenotic but not contralateral control kidney of clipped 2K1C mice. Treatment with rapamycin, an inducer of exosome release, blunted the hypertensive response to clipping, whereas GW-4869, an exosome biosynthesis inhibitor, prevented both the clipping-induced increase in inner medullary exosome marker staining and the unclipping-induced fall in MAP. Plasma exosomes isolated from unclipped 2K1C mice showed elevated neutral lipid content compared to sham mouse exosomes by flow cytometric analysis after Nile red staining. Exosomes from 2K1C but not sham control mice exerted potent MAP-lowering and diuretic-natriuretic effects in both 2K1C and angiotensin II-infused hypertensive mice. These results are consistent with increased renomedullary synthesis and release of exosomes with elevated antihypertensive neutral lipids in response to increased renal perfusion pressure.


Assuntos
Anti-Hipertensivos , Exossomos , Hipertensão , Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Diuréticos/farmacologia , Hipertensão/terapia , Rim , Lipídeos , Masculino , Camundongos , Natriuréticos/farmacologia , Sirolimo/farmacologia
2.
FASEB J ; 35(7): e21732, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34143450

RESUMO

Acid ceramidase (murine gene code: Asah1) (50 kDa) belongs to N-terminal nucleophile hydrolase family. This enzyme is located in the lysosome, which mediates conversion of ceramide (CER) into sphingosine and free fatty acids at acidic pH. CER plays an important role in intracellular sphingolipid metabolism and its increase causes inflammation. The mammalian target of rapamycin complex 1 (mTORC1) signaling on late endosomes (LEs)/lysosomes may control cargo selection, membrane biogenesis, and exosome secretion, which may be fine controlled by lysosomal sphingolipids such as CER. This lysosomal-CER-mTOR signaling may be a crucial molecular mechanism responsible for development of arterial medial calcification (AMC). Torin-1 (5 mg/kg/day), an mTOR inhibitor, significantly decreased aortic medial calcification accompanied with decreased expression of osteogenic markers like osteopontin (OSP) and runt-related transcription factor 2 (RUNX2) and upregulation of smooth muscle 22α (SM22-α) in mice receiving high dose of Vitamin D (500 000 IU/kg/day). Asah1fl/fl /SMCre mice had markedly increased co-localization of mTORC1 with lysosome-associated membrane protein-1 (Lamp-1) (lysosome marker) and decreased co-localization of vacuolar protein sorting-associated protein 16 (VPS16) (a multivesicular bodies [MVBs] marker) with Lamp-1, suggesting mTOR activation caused reduced MVBs interaction with lysosomes. Torin-1 significantly reduced the co-localization of mTOR vs Lamp-1, increased lysosome-MVB interaction which was associated with reduced accumulation of CD63 and annexin 2 (exosome markers) in the coronary arterial wall of mice. Using coronary artery smooth muscle cells (CASMCs), Pi -stimulation significantly increased p-mTOR expression in Asah1fl/fl /SMCre CASMCs as compared to WT/WT cells associated with increased calcium deposition and mineralization. Torin-1 blocked Pi -induced calcium deposition and mineralization. siRNA mTOR and Torin-1 significantly reduce co-localization of mTORC1 with Lamp-1, increased VPS16 vs Lamp-1 co-localization in Pi -stimulated CASMCs, associated with decreased exosome release. Functionally, Torin-1 significantly reduces arterial stiffening as shown by restoration from increased pulse wave velocity and decreased elastin breaks. These results suggest that lysosomal CER-mTOR signaling may play a critical role for the control of lysosome-MVB interaction, exosome secretion and arterial stiffening during AMC.


Assuntos
Ceramidase Ácida/metabolismo , Exossomos/metabolismo , Mamíferos/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteogênese/fisiologia , Sirolimo/metabolismo , Animais , Aorta/metabolismo , Cálcio/metabolismo , Ceramidas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Vasos Coronários/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Corpos Multivesiculares/metabolismo , Análise de Onda de Pulso/métodos , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Calcificação Vascular/metabolismo
3.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138242

RESUMO

Recent studies have shown that arterial medial calcification is mediated by abnormal release of exosomes/small extracellular vesicles from vascular smooth muscle cells (VSMCs) and that small extracellular vesicle (sEV) secretion from cells is associated with lysosome activity. The present study was designed to investigate whether lysosomal expression of mucolipin-1, a product of the mouse Mcoln1 gene, contributes to lysosomal positioning and sEV secretion, thereby leading to arterial medial calcification (AMC) and stiffening. In Mcoln1-/- mice, we found that a high dose of vitamin D (Vit D; 500,000 IU/kg/day) resulted in increased AMC compared to their wild-type littermates, which was accompanied by significant downregulation of SM22-α and upregulation of RUNX2 and osteopontin in the arterial media, indicating a phenotypic switch to osteogenic. It was also shown that significantly decreased co-localization of lysosome marker (Lamp-1) with lysosome coupling marker (Rab 7 and ALG-2) in the aortic wall of Mcoln1-/- mice as compared to their wild-type littermates. Besides, Mcoln1-/- mice showed significant increase in the expression of exosome/ sEV markers, CD63, and annexin-II (AnX2) in the arterial medial wall, accompanied by significantly reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), suggesting a reduction of the lysosome-MVB interactions. In the plasma of Mcoln1-/- mice, the number of sEVs significantly increased as compared to the wild-type littermates. Functionally, pulse wave velocity (PWV), an arterial stiffening indicator, was found significantly increased in Mcoln1-/- mice, and Vit D treatment further enhanced such stiffening. All these data indicate that the Mcoln1 gene deletion in mice leads to abnormal lysosome positioning and increased sEV secretion, which may contribute to the arterial stiffness during the development of AMC.


Assuntos
Vesículas Extracelulares/metabolismo , Lisossomos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Calcificação Vascular/metabolismo , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Vesículas Extracelulares/patologia , Imuno-Histoquímica , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Corpos Multivesiculares/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Canais de Potencial de Receptor Transitório/genética
4.
Am J Pathol ; 188(12): 2948-2959, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273598

RESUMO

We hypothesized that autophagy and associated lysosome function serve as a critical modulator during Nod-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome activation on proatherogenic stimuli. We first demonstrated that 7-ketocholesterol stimulated Nlrp3 inflammasome formation and activation as shown by increased colocalization of inflammasome components [Nlrp3 versus apoptosis associated speck-like protein (Asc) or caspase-1] and enhanced cleavage of caspase-1 into active caspase-1 to generate IL-1ß in coronary artery smooth muscle cells. Deletion of the CD38 gene (CD38-/-) that regulates lysosome function and autophagic flux also led to Nlrp3 inflammasome formation and activation. In the presence of rapamycin, the effects of either 7-ketocholesterol treatment or CD38 gene deletion were abolished. The autophagy inhibitor spautin-1 and the lysosome function blocker bafilomycin A1 also enhanced Nlrp3 inflammasome formation and activation. In animal experiments, we found that increased colocalization of Nlrp3 versus Asc or caspase-1 enhanced IL-1ß accumulation and caspase-1 activity in the coronary arterial wall of CD38-/- mice on the Western diet compared with CD38+/+ mice. This increased colocalization was blocked by treatment with rapamycin but enhanced by chloroquine, a water-soluble blocker of autophagic flux. Morphologic examinations confirmed that the media of coronary arteries was significantly thicker in CD38-/- mice on the Western diet than CD38+/+ mice. In conclusion, the deficiency of autophagic flux promotes Nlrp3 inflammasome formation and activation in coronary artery smooth muscle cells on proatherogenic stimulation, leading to medial thickening of the coronary arterial wall.


Assuntos
Autofagia , Doença da Artéria Coronariana/prevenção & controle , Vasos Coronários/imunologia , Inflamação/prevenção & controle , Miócitos de Músculo Liso/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , ADP-Ribosil Ciclase 1/fisiologia , Animais , Caspase 1 , Células Cultivadas , Doença da Artéria Coronariana/imunologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Inflamassomos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
5.
Redox Biol ; 16: 21-31, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29475132

RESUMO

Short chain fatty acids (SCFAs), a family of gut microbial metabolites, have been reported to promote preservation of endothelial function and thereby exert anti-atherosclerotic action. However, the precise mechanism mediating this protective action of SCFAs remains unknown. The present study investigated the effects of SCFAs (acetate, propionate and butyrate) on the activation of Nod-like receptor pyrin domain 3 (Nlrp3) inflammasome in endothelial cells (ECs) and associated carotid neointima formation. Using a partial ligated carotid artery (PLCA) mouse model fed with the Western diet (WD), we found that butyrate significantly decreased Nlrp3 inflammasome formation and activation in the carotid arterial wall of wild type mice (Asc+/+), which was comparable to the effect of gene deletion of the adaptor protein apoptosis-associated speck-like protein gene (Asc-/-). Nevertheless, both acetate and propionate markedly enhanced the formation and activation of the Nlrp3 inflammasome as well as carotid neointima formation in the carotid arteries with PLCA in Asc+/+, but not Asc-/- mice. In cultured ECs (EOMA cells), butyrate was found to significantly decrease the formation and activation of Nlrp3 inflammasomes induced by 7-ketocholesterol (7-Ket) or cholesterol crystals (CHC), while acetate did not inhibit Nlrp3 inflammasome activation induced by either 7-Ket or CHC, but itself even activated Nlrp3 inflammsomes. Mechanistically, the inhibitory action of butyrate on the Nlrp3 inflammasome was attributed to a blockade of lipid raft redox signaling platforms to produce O2•- upon 7-Ket or CHC stimulations. These results indicate that SCFAs have differential effects on endothelial Nlrp3 inflammasome activation and associated carotid neointima formation.


Assuntos
Antioxidantes/administração & dosagem , Butiratos/administração & dosagem , Proteínas Adaptadoras de Sinalização CARD/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neointima/tratamento farmacológico , Animais , Dieta Ocidental/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neointima/metabolismo , Neointima/patologia , Oxirredução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Free Radic Biol Med ; 106: 236-244, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28193546

RESUMO

NADPH oxidase (NOX)-derived reactive oxygen species (ROS) have been demonstrated to mediate the activation of NOD-like receptor protein 3 (NLRP3) inflammasomes in podocytes in response to elevated levels of homocysteine (Hcys). However, it remains unknown how NLRP3 inflammasome activation is triggered by NOX. The present study tested whether the guanine nucleotide exchange factor Vav2 mediates Rac1-mediated NOX activation in response to elevated Hcys leading to NLRP3 inflammasome activation in podocytes and consequent glomerular injury. In a mouse model of hyperhomocysteinemia (hHcys), we found that mice with hHcys (on the FF diet) or oncoVav2 (a constitutively active form of Vav2) transfection in the kidney exhibited increased colocalization of NLRP3 with apoptosis-associated speck-like protein (ASC) or caspase-1 and elevated IL-1ß levels in glomeruli, indicating the formation and activation of the NLRP3 inflammasome. This glomerular NLRP3 inflammasome activation was accompanied by podocyte dysfunction and glomerular injury, even sclerosis. Local transfection of Vav2 shRNA plasmids significantly attenuated hHcys-induced NLRP3 inflammasome activation, podocyte injury, and glomerular sclerosis. In cultured podocytes, Hcys treatment and oncoVav2 transfection were also found to increase NLRP3 inflammasome formation and activation, which were all inhibited by Vav2 shRNA. Furthermore, Vav2 shRNA prevented Hcys-induced podocyte damage as shown by restoring Hcys-impaired VEGF secretion and podocin production. This inhibitory action of Vav2 shRNA on Hcys-induced podocyte injury was associated with reduction of Rac1 activity and ROS production. These results suggest that elevated Hcys levels activate Vav2 and thereby increase NOX activity leading to ROS production, which triggers NLRP3 inflammasome activation, podocyte dysfunction and glomerular injury.


Assuntos
Hiper-Homocisteinemia/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Modelos Animais de Doenças , Homocisteína/biossíntese , Humanos , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/patologia , Inflamassomos/genética , Inflamassomos/metabolismo , Glomérulos Renais/lesões , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neuropeptídeos/genética , Podócitos/metabolismo , Podócitos/patologia , Proteínas Proto-Oncogênicas c-vav/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas rac1 de Ligação ao GTP/genética
7.
Cell Physiol Biochem ; 41(2): 555-568, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214847

RESUMO

BACKGROUND: Autophagy disorder contributes to dedifferentiation of arterial smooth muscle cells, but the mechanisms are poorly understood. Here, we sought to investigate the role of scaffolding adaptor p62/SQSTM1 (p62) in phenotype switching of mouse coronary arterial myocytes (CAMs) induced by CD38 gene deficiency or lysosomal dysfunction which blocks autophagic flux in the cells. METHODS: Protein expression was measured by western blot analysis and immunofluorescent staining. Cell cycle and proliferation rate were analyzed by flow cytometry and MTS assay respectively. mRNA abundance was tested by qRT-PCR. RESULTS: CD38 gene deficiency or bafilomycin A1 (baf), a selective lysosomal inhibitor treatment increased proliferation rate and vimentin expression in CAMs which was prevented by p62 gene silencing. Cell percentage in G2/M and G0/G1 phase was decreased and increased by CD38 deficiency or baf treatment, respectively which was accompanied by accrual of cyclin-dependent kinase 1 (CDK1) protein. Although free ubiquitin content was increased, the colocalization of it to CDK1 was markedly decreased in CD38-/- or baf treated CAMs. Furthermore, the changes in both cell cycle and CDK1 ubiquitinylation could be restored by p62 gene silencing. CONCLUSION: The results suggest in CD38-/- or baf treated CAMs, p62 accumulation promotes phenotype transition and proliferation by accelerating cell cycle progress through G2/M which might relate to the compromised ubiquitinylation and degradation of CDK1.


Assuntos
Autofagia , Miócitos Cardíacos/metabolismo , Proteína Sequestossoma-1/metabolismo , ADP-Ribosil Ciclase 1/deficiência , ADP-Ribosil Ciclase 1/genética , Animais , Autofagia/efeitos dos fármacos , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cloroquina/farmacologia , Vasos Coronários/citologia , Lisossomos/metabolismo , Macrolídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Fenótipo , RNA Interferente Pequeno/metabolismo , Proteína Sequestossoma-1/antagonistas & inibidores , Proteína Sequestossoma-1/genética , Ubiquitinação/efeitos dos fármacos , Vimentina/genética , Vimentina/metabolismo
8.
J Cell Mol Med ; 21(2): 364-374, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27629819

RESUMO

Statins, 3-hydroxyl-3-methylglutaryl coenzyme A reductase inhibitors, are the first-line medications prescribed for the prevention and treatment of coronary artery diseases. The efficacy of statins has been attributed not only to their systemic cholesterol-lowering actions but also to their pleiotropic effects that are unrelated to cholesterol reduction. These pleiotropic effects have been increasingly recognized as essential in statins therapy. This study was designed to investigate the pleiotropic actions of simvastatin, one of the most commonly prescribed statins, on macrophage cholesterol homeostasis with a focus on lysosomal free cholesterol egression. With simultaneous nile red and filipin staining, analysis of confocal/multi-photon imaging demonstrated that simvastatin markedly attenuated unesterified (free) cholesterol buildup in macrophages loaded with oxidized low-density lipoprotein but had little effect in reducing the sizes of cholesteryl ester-containing lipid droplets; the reduction in free cholesterol was mainly attributed to decreases in lysosome-compartmentalized cholesterol. Functionally, the egression of free cholesterol from lysosomes attenuated pro-inflammatory cytokine secretion. It was determined that the reduction of lysosomal free cholesterol buildup by simvastatin was due to the up-regulation of Niemann-Pick C1 (NPC1), a lysosomal residing cholesterol transporter. Moreover, the enhanced enzymatic production of 7-hydroxycholesterol by cytochrome P450 7A1 and the subsequent activation of liver X receptor α underscored the up-regulation of NPC1. These findings reveal a novel pleiotropic effect of simvastatin in affecting lysosomal cholesterol efflux in macrophages and the associated significance in the treatment of atherosclerosis.


Assuntos
Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/farmacologia , Receptores X do Fígado/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Proteínas/metabolismo , Sinvastatina/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína C1 de Niemann-Pick , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
J Cell Mol Med ; 20(6): 1001-13, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26818887

RESUMO

The disruption in transportation of oxLDL-derived cholesterol and the subsequent lipid accumulation in macrophages are the hallmark events in atherogenesis. Our recent studies demonstrated that lysosomal Ca(2+) messenger of nicotinic acid adenine dinucleotide phosphate (NAADP), an enzymatic product of CD38 ADP-ribosylcyclase (CD38), promoted lipid endocytic trafficking in human fibroblast cells. The current studies are designed to examine the functional role of CD38/NAADP pathway in the regulation of lysosomal cholesterol efflux in atherosclerosis. Oil red O staining showed that oxLDL concentration-dependently increased lipid buildup in bone marrow-derived macrophages from both wild type and CD38(-/-) , but to a significant higher extent with CD38 gene deletion. Bodipy 493/503 fluorescence staining found that the deposited lipid in macrophages was mainly enclosed in lysosomal organelles and largely enhanced with the blockade of CD38/NAADP pathway. Filipin staining and direct measurement of lysosome fraction further revealed that the free cholesterol constituted a major portion of the total cholesterol segregated in lysosomes. Moreover, in situ assay disclosed that both lysosomal lumen acidity and the acid lipase activity were reduced upon cholesterol buildup in lysosomes. In CD38(-/-) mice, treatment with Western diet (12 weeks) produced atherosclerotic damage in coronary artery with striking lysosomal cholesterol sequestration in macrophages. These data provide the first experimental evidence that the proper function of CD38/NAADP pathway plays an essential role in promoting free cholesterol efflux from lysosomes and that a defection of this signalling leads to lysosomal cholesterol accumulation in macrophages and results in coronary atherosclerosis in CD38(-/-) mice.


Assuntos
ADP-Ribosil Ciclase 1/deficiência , ADP-Ribosil Ciclase 1/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , ADP-Ribosil Ciclase 1/genética , Ácidos/metabolismo , Animais , Aterosclerose/patologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Agregação Celular/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Genótipo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Macrófagos/efeitos dos fármacos , Macrófagos/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , NADP/análogos & derivados , NADP/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Esterol Esterase/metabolismo
10.
Stem Cell Res Ther ; 6: 208, 2015 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-26519255

RESUMO

INTRODUCTION: Effective therapies for obesity and diabetes are still lacking. The aim of this study was to evaluate whether a single intravenous infusion of syngeneic adipose-derived mesenchymal stem cells (ASCs) can reduce obesity, lower insulin resistance, and improve glucose homeostasis in a high-fat diet-induced obese (DIO) mouse model. METHODS: Seven-week-old C57BL/6 mice were fed a high-fat diet for 20 weeks to generate the DIO mouse model. Mice were given a single intravenous infusion of ex vivo expanded syngeneic ASCs at 2 × 10(6) cells per mouse. DIO or CHOW mice injected with saline were used as controls. Body weights, blood glucose levels, glucose, and insulin tolerance test results were obtained before and 2 and 6 weeks after cell infusion. Triglyceride (TG), high-density lipoprotein (HDL), and insulin levels in serum were measured. Expressions of genes related to insulin resistance, including peroxisome proliferator-activated receptor γ (PPARγ) and insulin receptor (InsR), and inflammation (IL-6, F4/80, and nucleotide-binding oligomerization domain containing 2, or NOD2), were measured in livers at mRNA level by real-time-polymerase chain reaction analysis. Beta-cell mass in pancrheases from CHOW, DIO, and DIO + ASC mice was quantified. GFP(+) ASCs were injected, and the presence of GFP(+) cells in livers and pancreases was determined. RESULTS: DIO mice that had received ASCs showed reduced body weights, reduced blood glucose levels, and increased glucose tolerance. ASC treatment was found to reduce TG levels and increase serum HDL levels. In livers, less fat cell deposition was observed, as were increased expression of InsR and PPARγ and reduction in expressions of IL-6 and F4/80. Treated mice showed well-preserved pancreatic ß-cell mass with reduced expression of F4/80 and TNF-α compared with DIO controls. GFP(+) cells were found in liver and pancreas tissues at 1 and 2 weeks after cell injection. CONCLUSIONS: ASC therapy is effective in lowering blood glucose levels and increasing glucose tolerance in DIO mice. The protective effects of ASCs arise at least in part from suppression of inflammation in the liver. In addition, ASCs are associated with better-preserved pancreatic ß-cell mass.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Obesidade/terapia , Animais , Glicemia , Células Cultivadas , Intolerância à Glucose , Homeostase , Resistência à Insulina , Gordura Intra-Abdominal/patologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/etiologia , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA