Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Water Res ; 259: 121820, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815339

RESUMO

Single cell protein (SCP, or microbial protein) is one of the emerging alternative protein sources to address the global challenge of food insecurity. Recently, the SCP produced from methane has attracted substantial attention since methane is a renewable resource attainable from anaerobic digestion. However, the supply of methane, an insoluble gas in water, is one of the major challenges in producing methane-based SCP. This work developed a novel bioreactor configuration, in which hollow fiber membrane was used for efficient methane supply while microorganisms were growing in the suspended form favourable for the biomass harvest. Over a 312-day operation, the impacts of three critical parameters on the SCP production were investigated, including the ratio of methane loading to ammonium loading, the ratio of methane loading to oxygen loading, and the sludge retention time (SRT). Under the condition of 4 g CH4/g NH4+, 4 g O2/g CH4, and SRT of 4 days, the highest SCP production yield was observed and determined to be 1.36 g SCP/g CH4 and 5.05 g SCP/g N, respectively. The protein content was up to 67 %, which is higher than the majority of reported values to date. Moreover, the methane and ammonium utilization efficiencies were both close to 100 %, suggesting the highly efficient utilization of substrates in this new bioreactor configuration. A high relative abundance of essential amino acids (EAA) above 42 % was achieved, representing the highest EAA content reported. These findings provide valuable insights into SCP production using methane as a feedstock.


Assuntos
Reatores Biológicos , Metano , Metano/metabolismo , Proteínas de Bactérias/metabolismo , Compostos de Amônio/metabolismo , Membranas Artificiais , Esgotos , Proteínas Alimentares
2.
Cell Prolif ; 57(6): e13605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38282322

RESUMO

Clinicians and researchers have always faced challenges in performing surgery for rotator cuff tears (RCT) due to the intricate nature of the tendon-bone gradient and the limited long-term effectiveness. At the same time, the occurrence of an inflammatory microenvironment further aggravates tissue damage, which has a negative impact on the regeneration process of mesenchymal stem cells (MSCs) and eventually leads to the production of scar tissue. Tetrahedral framework nucleic acids (tFNAs), novel nanomaterials, have shown great potential in biomedicine due to their strong biocompatibility, excellent cellular internalisation ability, and unparalleled programmability. The objective of this research was to examine if tFNAs have a positive effect on regeneration after RCTs. Experiments conducted in a controlled environment demonstrated that tFNAs hindered the assembly of inflammasomes in macrophages, resulting in a decrease in the release of inflammatory factors. Next, tFNAs were shown to exert a protective effect on the osteogenic and chondrogenic differentiation of bone marrow MSCs under inflammatory conditions. The in vitro results also demonstrated the regulatory effect of tFNAs on tendon-related protein expression levels in tenocytes after inflammatory stimulation. Finally, intra-articular injection of tFNAs into a rat RCT model showed that tFNAs improved tendon-to-bone healing, suggesting that tFNAs may be promising tendon-to-bone protective agents for the treatment of RCTs.


Assuntos
Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Lesões do Manguito Rotador , Lesões do Manguito Rotador/tratamento farmacológico , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/patologia , Animais , Ratos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Ácidos Nucleicos/farmacologia , Ácidos Nucleicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Tendões/efeitos dos fármacos , Tendões/metabolismo , Tendões/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Manguito Rotador/cirurgia , Manguito Rotador/patologia , Condrogênese/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
3.
Environ Sci Technol ; 57(48): 19793-19804, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37947777

RESUMO

Pyrogenic carbon (PC) can mediate electron transfer and thus catalyze biogeochemical processes to impact greenhouse gas (GHG) emissions. Here, we demonstrate that PC can contribute to mitigating GHG emissions by promoting the Fe(III)-dependent anaerobic oxidation of methane (AOM). It was found that the amendment PCs in microcosms dominated by Methanoperedenaceae performing Fe(III)-dependent AOM simultaneously promoted the rate of AOM and Fe(III) reduction with a consistent ratio close to the theoretical stoichiometry of 1:8. Further correlation analysis showed that the AOM rate was linearly correlated with the electron exchange capacity, but not the conductivity, of added PC materials, indicating the redox-cycling electron transfer mechanism to promote the Fe(III)-dependent AOM. The mass content of the C═O moiety from differentially treated PCs was well correlated with the AOM rate, suggesting that surface redox-active quinone groups on PCs contribute to facilitating Fe(III)-dependent AOM. Further microbial analyses indicate that PC likely shuttles direct electron transfer from Methanoperedenaceae to Fe(III) reduction. This study provides new insight into the climate-cooling impact of PCs, and our evaluation indicates that the PC-facilitated Fe(III)-dependent AOM could have a significant contribution to suppressing methane emissions from the world's reservoirs.


Assuntos
Archaea , Compostos Férricos , Anaerobiose , Metano , Oxirredução , Ferro
4.
Nat Commun ; 14(1): 6405, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828023

RESUMO

Integrated urban water management is a well-accepted concept for managing urban water. It requires efficient and integrated technological solutions that enable system-wide gains via a whole-of-system approach. Here, we create a solid link between the manufacturing of an iron salt, its application in an urban water system, and high-quality bioenergy recovery from wastewater. An iron-oxidising electrochemical cell is used to remove CO2 (also H2S and NH3) from biogas, thus achieving biogas upgrading, and simultaneously producing FeCO3. The subsequent dose of the electrochemically produced FeCO3 to wastewater and sludge removes sulfide and phosphate, and enhances sludge settleability and dewaterability, with comparable or superior performance compared to the imported and hazardous iron salts it substitutes (FeCl2, and FeCl3). The process enables water utilities to establish a self-reliant and more secure supply chain to meet its demand for iron salts, at lower economic and environmental costs, and simultaneously achieve recovery of high-quality bioenergy.

5.
J Nanobiotechnology ; 21(1): 269, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574546

RESUMO

Successful biomaterial implantation requires appropriate immune responses. Macrophages are key mediators involved in this process. Currently, exploitation of the intrinsic properties of biomaterials to modulate macrophages and immune responses is appealing. In this study, we prepared hydrophilic nanofibers with an aligned topography by incorporating polyethylene glycol and polycaprolactone using axial electrospinning. We investigated the effect of the nanofibers on macrophage behavior and the underlying mechanisms. With the increase of hydrophilicity of aligned nanofibers, the inflammatory gene expression of macrophages adhering to them was downregulated, and M2 polarization was induced. We further presented clear evidence that the inflammasome NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was the cellular sensor by which macrophages sense the biomaterials, and it acted as a regulator of the macrophage-mediated response to foreign bodies and implant integration. In vivo, we showed that the fibers shaped the implant-related immune microenvironment and ameliorated peritendinous adhesions. In conclusion, our study demonstrated that hydrophilic aligned nanofibers exhibited better biocompatibility and immunological properties.


Assuntos
Inflamassomos , Nanofibras , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Interações Hidrofóbicas e Hidrofílicas
6.
Sci Total Environ ; 895: 165174, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385509

RESUMO

The sidestream sludge treatment by free ammonium (FA)/free nitrous acid (FNA) dosing was frequently demonstrated to maintain the nitrite pathway for the partial nitrification (PN) process. Nevertheless, the inhibitory effect of FA and FNA would severely influence polyphosphate accumulating organisms (PAOs), destroying the microbe-based phosphorus (P) removal. Therefore, a strategic evaluation was proposed to successfully achieve biological P removal with a partial nitrification process in a single sludge system by sidestream FA and FNA dosing. Through the long-term operation of 500 days, excellent phosphorus, ammonium and total nitrogen removal performance were achieved at 97.5 ± 2.6 %, 99.1 ± 1.0 % and 75.5 ± 0.4 %, respectively. Stable partial nitrification with a nitrite accumulation ratio (NAR) of 94.1 ± 3.4 was attained. The batch tests also reported the robust aerobic phosphorus uptake based on FA and FNA adapted sludge after exposure of FA and FNA, respectively, suggesting the FA and FNA treatment strategy could potentially offer the opportunity for the selection of PAOs, which synchronously have the tolerance to FA and FNA. Microbial community analysis suggested that Accumulibacter, Tetrasphaera, and Comamonadaceae collectively contributed to the phosphorus removal in this system. Summarily, the proposed work presents a novel and feasible strategy to integrate enhanced biological phosphorus removal (EBPR) and short-cut nitrogen cycling and bring the combined mainstream phosphorus removal and partial nitrification process closer to practical application.


Assuntos
Compostos de Amônio , Ácido Nitroso , Nitritos/metabolismo , Nitrificação , Amônia , Esgotos , Fósforo/metabolismo , Reatores Biológicos , Nitrogênio/metabolismo , Polifosfatos
7.
Water Res ; 240: 120077, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247440

RESUMO

Sulfide control is a significant problem in urban sewer management. Although in-sewer dosing of chemicals has been widely applied, it is prone to high chemical consumption and cost. A new approach is proposed in this study for effective sulfide control in sewers. It involves advanced oxidation of ferrous sulfide (FeS) in sewer sediment, to produce hydroxyl radical (·OH) in-situ, leading to simultaneous sulfide oxidation and reduction of microbial sulfate-reducing activity. Long-term operation of three laboratory sewer sediment reactors was used to test the effectiveness of sulfide control. The experimental reactor with the proposed in-situ advanced FeS oxidation substantially reduced sulfide concentration to 3.1 ± 1.8 mg S/L. This compares to 9.2 ± 2.7 mg S/L in a control reactor with sole oxygen supply, and 14.1 ± 4.2 mg S/L in the other control reactor without either iron or oxygen. Mechanistic investigations illustrated the critical role of ·OH, produced from the oxidation of sediment iron, in regulating microbial communities and the chemical sulfide oxidation reaction. Together these results demonstrate that incorporating the advanced FeS oxidation process in sewer sediment enable superior performance of sulfide control at a much lower iron dosage, thereby largely saving chemical use.


Assuntos
Sulfeto de Hidrogênio , Ferro , Esgotos , Sulfetos , Compostos Ferrosos
8.
Sci Total Environ ; 875: 162628, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889383

RESUMO

Anaerobic treatment of domestic wastewater has the advantages of lower biomass yield, lower energy demand and higher energy recover over the conventional aerobic treatment process. However, the anaerobic process has the inherent issues of excessive phosphate and sulfide in effluent and superfluous H2S and CO2 in biogas. An electrochemical method allowing for in-situ generation of Fe2+ in the anode and hydroxide ion (OH-) and H2 in the cathode was proposed to overcome the challenges simultaneously. The effect of electrochemically generated iron (e­iron) on the performance of anaerobic wastewater treatment process was explored with four different dosages in this work. The results showed that compared to control, the experimental system displayed an increase of 13.4-28.4 % in COD removal efficiency, 12.0-21.3 % in CH4 production rate, 79.8-98.5 % in dissolved sulfide reduction, 26.0-96.0 % in phosphate removal efficiency, depending on the e­iron dosage between 40 and 200 mg Fe/L. Dosing of the e­iron significantly upgraded the quality of produced biogas, showing a much lower CO2 and H2S contents in biogas in experimental reactor than that in control reactor. The results thus demonstrated that e­iron can significantly improve the performance of anaerobic wastewater treatment process, bringing multiple benefits with the increase of its dosage regarding effluent and biogas quality.

9.
Water Res ; 225: 119202, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215837

RESUMO

Although iron salts such as iron(III) chloride (FeCl3) have widespread application in wastewater treatment, safety concerns limit their use, due to the corrosive nature of concentrated solutions. This study demonstrates that local, electrochemical generation of iron is a viable alternative to the use of iron salts. Three laboratory systems with anaerobic membrane processes were set up to treat real wastewater; two systems used the production of either in-situ or ex-situ electrochemical iron (as Fe2+ and Fe2+(Fe3+)2O4, respectively), while the other system served as a control. These systems were operated for over one year to assess the impact of electrochemically produced iron on system performance. The results showed that dosing of electrochemical iron significantly reduced sulfide concentration in effluent and hydrogen sulfide content in biogas, and mitigated organics-based membrane fouling, all of which are critical issues inherently related to sustainability of anaerobic wastewater treatment. The electrochemical iron strategy can generate multiple benefits for wastewater management including increased removal efficiencies for total and volatile suspended solids, chemical oxygen demand and phosphorus. The rate of methane production also increased with electrochemically produced iron. Economic analysis revealed the viability of electrochemical iron with total cost reduced by one quarter to a third compared with using FeCl3. These benefits indicate that electrochemical iron dosing can greatly enhance the overall operation and performance of anaerobic membrane processes, and this particularly facilitates wastewater management in a decentralized scenario.


Assuntos
Cáusticos , Sulfeto de Hidrogênio , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Ferro/química , Esgotos/química , Reatores Biológicos , Anaerobiose , Biocombustíveis , Cloretos , Sais , Fósforo , Sulfetos , Metano
10.
Front Surg ; 9: 809699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237649

RESUMO

BACKGROUND: Total knee arthroplasty (TKA) is now frequently performed and is highly successful. However, patient satisfaction after TKA is often difficult to achieve. Because of the presence of metallic prosthetic knee joints, there is a lack of imaging tools that can accurately assess the patient's postoperative prosthetic position, soft tissue impingement, and periprosthetic bone density after TKA. We conducted a clinical trial of the world's first totally modular polyetheretherketone (PEEK) TKA and determined the bone density values in the stress concentration area around the prosthesis based on postoperative computed tomography data to reconstruct a three-dimensional model of the PEEK prosthetic knee joint after implantation. Based on the model, the overhang of the prosthesis was measured at various locations on the prosthesis. METHODS: All patients who underwent PEEK-based TKA were postoperatively assessed with radiography and computed tomography (CT). Hounsfield units (HUs) for the different components of the quantitative CT assessment were measured separately. RESULTS: Ten patients (nine female and one male) aged 59-74 (mean 66.9, median 67) years were included. The HU values were as follows: PEEK prosthesis mean 182.95, standard deviation (SD) 4.90, coefficient of variation (CV) 2.68; polyethylene mean -89.41, SD 4.14, CV -4.63; lateral femoral osteochondral mean 192.19, SD 55.05, CV 28.64; lateral tibial osteochondral mean 122.94, SD 62.14, CV 42.86; medial femoral osteophyte mean 180.76, SD 43.48, CV 24.05; and medial tibial osteophyte mean 282.59, SD 69.28, CV 24.52. Analysis of the data at 1, 3, and 6 months showed that the mean PE (p = 0.598) and PEEK (p = 0.916) measurements did not change with the time of measurement. There was a decrease in bone mineral density in the lateral tibia at 3 months (p = 0.044). Otherwise, there was no significant change in bone density in other regions (p = 0.124-0.803). There was no overhang in all femoral prostheses, whereas there were two cases of overhang in tibial prostheses. Overhang measurements do not differ significantly across time points. The overhang measurements were not significantly different at all time points (p = 0.186-0.967). CONCLUSION: PEEK knee joint prosthesis has excellent CT compatibility. The change in periprosthetic bone volume during the follow-up period can be determined using the HU value after CT scan, while the prosthesis position can be assessed. This assessment may potentially guide future improvements in knee prosthesis alignment techniques and artificial knee prosthesis designs.

11.
Am J Sports Med ; 50(2): 371-383, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34739346

RESUMO

BACKGROUND: Owing to limited self-healing capacity, failure of rotator cuff tendon healing is a common complication after surgery. Biological scaffolds have garnered attention owing to their potential to enhance healing outcomes. PURPOSE: To verify the effect of the decellularized umbilical cord Wharton jelly (DUCWJ) scaffold as a bridging scaffold in a rabbit model of acute rotator cuff tendon defect. STUDY DESIGN: Controlled laboratory study. METHODS: We fabricated a DUCWJ scaffold using a physicochemical decellularized method, evaluating changes in the umbilical cord Wharton jelly before and after decellularization. Scanning electron microscopy and biomechanical testing were performed to determine the microstructure and mechanical properties. We assessed cytocompatibility and cell regulatory behavior of the scaffold toward tendon stem/progenitor cells (TSPCs). A supraspinatus tendon defect was created in 54 New Zealand White rabbits, allocated to the DUCWJ scaffold repair group and the negative control group (without scaffold). Histology, reverse transcription polymerase chain reaction, and biomechanical tensile strength were assessed at 4, 8, and 12 weeks postoperatively. RESULTS: Decellularization completely removed cells from the umbilical cord Wharton jelly, retained a considerable amount of glycosaminoglycan and collagen, and preserved the microstructure and tensile strength. The DUCWJ scaffold facilitated migration and proliferation of TSPCs in vitro. Tendon-related gene expression revealed that the DUCWJ scaffold could maintain the tenocyte phenotype of TSPCs. In the in vivo study, the DUCWJ scaffold improved tendon healing and enhanced the biomechanical strength of repaired tendons. Histological evaluation scores of the DUCWJ group were significantly higher than those of the negative control at 4, 8, and 12 weeks after surgery (P < .05). In repaired tendon tissues, reverse transcription polymerase chain reaction findings revealed that the DUCWJ scaffold stimulated tendon development and maturation. Furthermore, an overall increase in ultimate load and tensile modulus was noted over time; the DUCWJ group presented better results than the negative control group (P < .05). CONCLUSION: The DUCWJ scaffold has an excellent 3-dimensional porous structure, good biocompatibility, and fundamental biomechanical characteristics, and it promotes migration, attachment, and proliferation of TSPCs. The in vivo animal study demonstrated that the DUCWJ scaffold has potential for tendon regeneration in an acute rotator cuff tendon defect model. CLINICAL RELEVANCE: DUCWJ scaffolds have potential as a regenerative material to augment rotator cuff healing in the clinical setting.


Assuntos
Lesões do Manguito Rotador , Geleia de Wharton , Animais , Fenômenos Biomecânicos , Humanos , Coelhos , Manguito Rotador/patologia , Lesões do Manguito Rotador/metabolismo , Lesões do Manguito Rotador/cirurgia , Tendões/patologia , Cordão Umbilical , Cicatrização
12.
Water Res ; 203: 117563, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419918

RESUMO

Biological nitrogen (N) removal via the short-cut pathway (NH4+-N→NO2--N→N2) is economically attractive in wastewater treatment plants (WWTPs). However, biological phosphorus (P) removal processes remain a bottleneck in these systems due to the strong inhibitory effect of nitrite or its protonated form (HNO2, free nitrous acid - FNA) on polyphosphate accumulating organisms (PAOs). In this study, a novel combined nitrogen and phosphorus removal strategy was verified and achieved in a biological short-cut nitrogen removal system via side-stream sludge treatment with FNA, and the mechanisms impacting this process were investigated. The side-stream FNA treatment process applied here led to a significant reduction in the real sludge retention time (SRT) in the mainstream (approximately 2.7 days) based on the biocidal effect of FNA to the majority of the organisms. This work also found that around 40% of the P uptake activity was still maintained at a much higher FNA level of 38 µg N/L with potential PAOs, which highly broadened the current knowledge of PAOs community. An economic analysis revealed advantages of the proposed as compared to conventional biological nitrogen and phosphorus removal (13% savings in total cost), biological short-cut nitrogen removal (via FNA treatment) with chemical phosphorus precipitation (21% savings) and conventional biological nitrogen removal with chemical precipitation (27% savings). Overall, this study presents a novel and viable retrofit strategy in integrating biological short-cut nitrogen removal with EBPR for next generation WWTPs.


Assuntos
Fósforo , Esgotos , Reatores Biológicos , Nitrogênio , Rios
13.
Water Res ; 203: 117536, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403845

RESUMO

Iron salts (i.e. FeCl3) are the most used chemicals in the urban wastewater system. Iron is commonly dosed into sewage or the mainstream system, which provides multiple benefits such as enhanced phosphorus removal and improved sludge settleability/dewaterability. This study reported and demonstrated a new approach that dosed FeCl3 into returned sludge in order to bring two more benefits to wastewater management: short-cut nitrogen removal via the nitrite pathway and less biomass production. This approach is achieved based on our findings that with similar amount of FeCl3, centralized iron dosing into a sidestream sludge unit generated iron concentration two orders of magnitude higher than the common mainstream dosing (e.g. 10-40 mg Fe/L-wastewater), leading to sludge acidification (pH = 2.1) with Fe (III) hydrolysis. Together with accumulated nitrite in the supernatant of the sludge, ppm-level of free nitrous acid was generated and thus enabled sludge disintegration, cell lysis, and selective elimination of nitrite-oxidizing bacteria (NOB). Long-term effects on nitrifying bacteria and overall reactor performance were evaluated using two laboratory reactor experiments for over one year. The experimental reactor showed stable nitrite accumulation with an average NO2-/(NO2- + NO3-) ratio above 80% and ∼30% observed biomass yield reduction compared to those in control reactors. In addition, the centralized sludge dosing strategy still provided benefits such as improved settleability and dewaterability of sludge and enhanced phosphorus removal.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Ferro , Eliminação de Resíduos Líquidos
14.
Water Res ; 201: 117306, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153823

RESUMO

A circular carbon bioeconomy has potential to halt atmospheric accumulation of greenhouse gases causing climate change and sustainably produce chemical, agricultural and fuel products. Here, we report application of a simplified technoeconomic assessment to critically review two approaches in this space - microbial electrosynthesis and gas fermentation. For microbial electrosynthesis, decoupling of surface-dependant abiotic process for electron delivery from volume-dependant biotic carbon fixation, is shown as the only economically viable strategy to scale-up due to comparatively low biofilm electron consumption rate. This is effectively an electrolyser-assisted gas fermentation system. Targeting high-value products, such as protein for human food consumption is one of the few pathways forward for electrolyser-assisted gas fermentation. Alternatively, gas fermentation of reformed biogas presents an interesting and potentially more sustainable implementation pathway to improve economic viability of chemicals. This critical review suggests linking water treatment resource recovery with gas fermentation is attractive for bioplastics and butanol in terms of competitiveness and market demand.


Assuntos
Dióxido de Carbono , Carbono , Biofilmes , Biocombustíveis , Fermentação , Humanos
15.
Water Res ; 201: 117370, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175729

RESUMO

Sewer deterioration caused by sulfide-induced concrete corrosion is spreading worldwide. Within the strategies to overcome this problem, dosing iron salts into the pipeline has attracted more attention. However, there is not yet research that evaluates this method whether it is overall environmentally friendly. Here, we conducted a comparative Life Cycle Assessment (LCA) to adjudge the benefits of dosing ferric chloride over non-dosing option in three different H2S concentration levels (High, Medium, Low). Compared with taking no precautions, dosing ferric chloride performs better for all impact categories only in High H2S situation, which can reduce the environmental impacts by 10% to 50%. In Medium H2S situation, dosing ferric chloride shows lower environmental impacts of Global Warming, Fossil Fuel Depletion, Acidification, and Eutrophication, while leads to the deterioration of Human Toxicity and Freshwater Ecotoxicity by 10% and 13%, respectively. In Low H2S situation, dosing ferric chloride performs even worse for all impact categories. Therefore, from an LCA perspective, this study recommends iron salts dosing technology to be applied in severe corrosion conditions caused by high H2S concentrations. Contribution analysis shows that asphalt and diesel consumed during the sewer construction and renovation dominate all impact categories for non-dosing option, whereas the main contributor of Human Toxicity and Freshwater Ecotoxicity is shifted to ferric chloride production in dosing option, average at around 50%. Sensitivity analysis on the length of pipes protected by iron salts confirms that the initial dosing location is more preferable to be set at upstream of the sewer system. From an LCA perspective, as alternatives to ferric chloride, ferrous chloride is superior in all impact categories, and ferric sulfate could reduce the toxicity-related impacts and other effects at the expense of exacerbation of acidification. In the end, a systematic optimization of salts dosing should be considered in urban sewer management practice.


Assuntos
Sais , Esgotos , Animais , Corrosão , Humanos , Ferro , Estágios do Ciclo de Vida
16.
Water Res ; 198: 117107, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33895588

RESUMO

Sanitary and stormwater sewers are buried assets that play important roles in the prevention of diseases and the reduction of health risks for our societies. Due to their hidden nature, these assets are not frequently assessed and maintained to optimal conditions. The lack of maintenance can cause sewer blockages and overflows that result in the release of pathogens into the environment. For cities, monitoring sewer conditions on a large-scale can be costly, time-consuming, and labor-intensive if using current low-throughput technologies, such as dye testing or closed-circuit television. Alternatively, smart sensor systems can provide low-cost, high-throughput, and automatic data-driven features for real-time monitoring applications. In this study, we developed ultrahigh-frequency radio-frequency identification (UHF RFID)-based sensors that are flushable and suitable for sanitary and stormwater pipes quick surveys. 3D printed RFID sensors were designed to float at the water-air interface and minimize the water interference to RF signal communications. The optimal detection range was also determined to support the design and installation of the reader in various utility holes. Field trials demonstrated that the UHF RFID system is a low-cost, high-throughput, and robust solution for monitoring blockage, illicit-connection, and water flow in sewer networks.


Assuntos
Dispositivo de Identificação por Radiofrequência , Cidades , Tecnologia
17.
Front Cell Dev Biol ; 9: 655440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842484

RESUMO

It remains scientifically challenging to regenerate injured cartilage in orthopedics. Recently, an endogenous cell recruitment strategy based on a combination of acellular scaffolds and chemoattractants to specifically and effectively recruit host cells and promote chondrogenic differentiation has brought new hope for in situ articular cartilage regeneration. In this study, a transforming growth factor-ß3 (TGF-ß3)-loaded biomimetic natural scaffold based on demineralized cancellous bone (DCB) and acellular cartilage extracellular matrix (ECM) was developed and found to improve chondral repair by enhancing cell migration and chondrogenesis. The DCB/ECM scaffold has porous microstructures (pore size: 67.76 ± 8.95 µm; porosity: 71.04 ± 1.62%), allowing the prolonged release of TGF-ß3 (up to 50% after 42 days in vitro) and infrapatellar fat pad adipose-derived stem cells (IPFSCs) that maintain high cell viability (>96%) and favorable cell distribution and phenotype after seeding onto the DCB/ECM scaffold. The DCB/ECM scaffold itself can also provide a sustained release system to effectively promote IPFSC migration (nearly twofold in vitro). Moreover, TGF-ß3 loaded on scaffolds showed enhanced chondrogenic differentiation (such as collagen II, ACAN, and SOX9) of IPFSCs after 3 weeks of culture. After implanting the composite scaffold into the knee joints of rabbits, enhanced chondrogenic differentiation was discovered at 1, 2, and 4 weeks post-surgery, and improved repair of cartilage defects in terms of biochemical, biomechanical, radiological, and histological results was identified at 3 and 6 months post-implantation. To conclude, our study demonstrates that the growth factor (GF)-loaded scaffold can facilitate cell homing, migration, and chondrogenic differentiation and promote the reconstructive effects of in vivo cartilage formation, revealing that this staged regeneration strategy combined with endogenous cell recruitment and pro-chondrogenesis is promising for in situ articular cartilage regeneration.

18.
J Orthop Translat ; 26: 67-73, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437625

RESUMO

BACKGROUND: The use of partial articular resurfacing surgery with a mini-implant has been gradually increasing; the implant is mainly made of cobalt-chromium metal material, and cartilage changes cannot be monitored after implantation. Thus, we aimed to develop a novel local articular resurfacing polyetheretherketone (PEEK) mini-implant and investigate its feasibility for postoperative magnetic resonance imaging (MRI) monitoring of implant location, bone changes, and cartilage degeneration without artefacts. METHODS: Nine skeletally mature female standardised goats were used and divided into the sham, PEEK, and cobalt-chromium-molybdenum alloy (Co-Cr-Mo) groups. The animals underwent local articular resurfacing operation with Co-Cr-Mo alloy (Co-Cr-Mo group) and PEEK (PEEK group) mini-implants. X-ray, computed tomography, and MRI examinations were performed at 12 weeks postoperatively. The sham group underwent a similar surgical procedure to expose the femoral head but without implantation. Gross necropsy and surface topography measurement of the articular cartilage of the acetabulum were performed after sacrificing the animals. Imaging artefacts and opposing cartilage degeneration in the acetabulum were also examined. RESULTS: Cartilage damage occurred in both the Co-Cr-Mo and PEEK groups, and the damaged cartilage area was markedly larger in the Co-Cr-Mo group than in the PEEK group, as assessed by gross necropsy and histological staining. The mean surface roughness of the opposing cartilage was approximately 65.3, 117.4, and 188.4 â€‹µm â€‹at 12 weeks in the sham, PEEK, and Co-Cr-Mo groups, respectively. The Co-Cr-Mo mini-implant was visualised on radiographs, but computed tomography and MR images were markedly affected by artefacts, whereas the opposing cartilage and surrounding tissue were clear on MR images in the PEEK group. Opposing cartilage damage and subchondral bone marrow oedema could be detected by MRI in the PEEK group. CONCLUSIONS: The PEEK mini-implant can be a novel alternative to the Co-Cr-Mo mini-implant in articular resurfacing to treat focal osteochondral defects with less cartilage damage. It is feasible to postoperatively monitor the PEEK implant location, surrounding bone changes, and opposing cartilage degeneration by MRI without artefacts. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: The use of MRI to monitor changes in the opposing cartilage after prosthesis implantation has not been widely applied because MR images are generally affected by artefacts generated by the metal prosthesis. This study revealed that the PEEK mini-implant can be a novel alternative to the Co-Cr-Mo mini-implant in articular resurfacing to treat focal osteochondral defects, and it is feasible to monitor the PEEK implant location, surrounding bone changes, and opposing cartilage damage/degeneration by MRI without artefacts postoperatively.

19.
J Hazard Mater ; 402: 124051, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254834

RESUMO

The impact of primary sedimentation on the multiple use of iron in an urban wastewater system was investigated. Our previous work showed that in-sewer iron-rich drinking water sludge (DWS) dosing exhibited multiple benefits in the downstream processes. However, the system studied did not include a primary settler. We hypothesised that primary sedimentation could significantly change the characteristics of the wastewater flowing to the bioreactor, particularly its particulate components. This could in turn influence the availability of iron for phosphate removal from wastewater and/or sulfide removal in the anaerobic sludge digester. Long-term (~4 months) experiments were carried out on two laboratory-scale wastewater systems, each comprising sewers reactors, a primary sedimentation tank, a wastewater treatment reactor, and an anaerobic sludge digester. It was found the majority (85%) of the Fe contained in the sewer effluent was present in the primary sludge with the remaining (15%) staying in the primary effluent. This significantly affected the flow-on effect of Fe on the phosphate removal during wastewater treatment, removing only 1.2 ± 0.1 mgP L-1, as compared to 3.5 ± 0.1 mgP L-1 achieved previously in the absence of a primary settler. However, the P to Fe removal ratio was 0.32 mgP/mgFe, similar to the ratio observed previously without primary sedimentation (0.36 mgP/mgFe). The dissolved sulfide removal in the anaerobic digester was 2.7 ± 0.5 mgS L-1, substantially lower than 7.2 ± 0.3 mgS L-1 previously attained without primary sedimentation. This suggests that Fe in the primary sludge was not completely available for dissolved sulfide removal in the digester. However, the dewaterability of the anaerobically digested sludge improved with a relative increase of 25.0 ± 0.9%, compared to the 21.7 ± 0.6%, previously observed without primary sedimentation. The results demonstrated that primary sedimentation reduced the effectiveness to deliver the benefits of the in-sewer DWS dosing strategy, but the results are still favourable.

20.
Acta Biomater ; 114: 31-52, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32652223

RESUMO

In the absence of timely and proper treatments, injuries to articular cartilage (AC) can lead to cartilage degeneration and ultimately result in osteoarthritis. Regenerative medicine and tissue engineering techniques are emerging as promising approaches for AC regeneration and repair. Although the use of cell-seeded scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Recently developed acellular scaffold approaches that rely on the recruitment of endogenous cells to the injured sites avoid these drawbacks and offer great promise for in situ AC regeneration. Multiple endogenous stem/progenitor cells (ESPCs) are found in joint-resident niches and have the capability to migrate to sites of injury to participate in AC regeneration. However, the natural recruitment of ESPCs is insufficient, and the local microenvironment is hostile after injury. Hence, an endogenous cell recruitment strategy based on the combination of chemoattractants and acellular scaffolds to effectively and specifically recruit ESPCs and improve local microenvironment may provide new insights into in situ AC regeneration. This review provides a brief overview of: (1) the status of endogenous cell recruitment strategy; (2) the subpopulations, potential migration routes (PMRs) of joint-resident ESPCs and their immunomodulatory and reparative effects; (3) chemoattractants and their potential adverse effects; (4) scaffold-based drug delivery systems (SDDSs) that are utilized for in situ AC regeneration; and (5) the challenges and future perspectives of endogenous cell recruitment strategy for AC regeneration. STATEMENT OF SIGNIFICANCE: Although the endogenous cell recruitment strategy for articular cartilage (AC) regeneration has been investigated for several decades, much work remains to be performed in this field. Future studies should have the following aims: (1) reporting the up-to-date progress in the endogenous cell recruitment strategies; (2) determining the subpopulations of ESPCs, the cellular and molecular mechanisms underlying the migration of these cells and their anti-inflammatory, immunomodulatory and reparative effects; (3) elucidating the chemoattractants that enhance ESPC recruitment and their potential adverse effects; and (4) developing advanced SDDSs for chemoattractant dispatch. Herein, we present a systematic overview of the aforementioned issues to provide a better understanding of endogenous cell recruitment strategies for AC regeneration and repair.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Células-Tronco Mesenquimais , Humanos , Regeneração , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA