Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796598

RESUMO

BACKGROUND: Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS: Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS: We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS: Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.

2.
Bioorg Chem ; 144: 107171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325131

RESUMO

Pin1 (proline isomerase peptidyl-prolyl isomerase NIMA-interacting-1), as a member of PPIase family, catalyzes cis-trans isomerization of pThr/Ser-Pro amide bonds of its substrate proteins, further regulating cell proliferation, division, apoptosis, and transformation. Pin1 is overexpressed in various cancers and is positively correlated with tumor initiation and progression. Pin1 inhibition can effectively reduce tumor growth and cancer stem cell expansion, block metastatic spread, and restore chemosensitivity, suggesting that targeting Pin1 may be an effective strategy for cancer treatment. Considering the promising therapeutic effects of Pin1 inhibitors on cancers, we herein are intended to comprehensively summarize the reported Pin1 inhibitors, mainly highlighting their structures, biological functions and binding modes, in hope of providing a reference for the future drug discovery.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Neoplasias/tratamento farmacológico , Proliferação de Células
3.
Clin Transl Med ; 13(7): e1328, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461251

RESUMO

BACKGROUND: MYCN amplification as a common genetic alteration that correlates with a poor prognosis for neuroblastoma (NB) patients. However, given the challenge of directly targeting MYCN, indirect strategies to modulate MYCN by interfering with its cofactors are attractive in NB treatment. Although cyclin B1 interacting protein 1 (CCNB1IP1) has been found to be upregulated in MYCN-driven mouse NB tissues, its regulation with MYCN and collaboration in driving the biological behaviour of NB remains unknown. METHODS: To evaluate the expression and clinical significance of CCNB1IP1 in NB patients, public datasets, clinical NB samples and cell lines were explored. MTT, EdU incorporation, colony and tumour sphere formation assays, and a mouse xenograft tumour model were utilized to examine the biological function of CCNB1IP1. The reciprocal manipulation of CCNB1IP1 and MYCN and the underlying mechanisms involved were investigated by gain- and loss-of-function approaches, dual-luciferase assay, chromatin immunoprecipitation (CHIP) and co-immunoprecipitation (Co-IP) experiments. RESULTS: CCNB1IP1 was upregulated in MYCN-amplified (MYCN-AM) NB cell lines and patients-derived tumour tissues, which was associated with poor prognosis. Phenotypic studies revealed that CCNB1IP1 facilitated the proliferation and tumourigenicity of NB cells in cooperation with MYCN in vitro and in vivo. Mechanistically, MYCN directly mediates the transcription of CCNB1IP1, which in turn attenuated the ubiquitination and degradation of MYCN protein, thus enhancing CCNB1IP1-MYCN cooperativity. Moreover, CCNB1IP1 competed with F box/WD-40 domain protein 7 (FBXW7) for MYCN binding and enabled MYCN-mediated tumourigenesis in a C-terminal domain-dependent manner. CONCLUSIONS: Our study revealed a previously uncharacterized mechanism of CCNB1IP1-mediated MYCN protein stability and will provide new prospects for precise treatment of MYCN-AM NB based on MYCN-CCNB1IP1 interaction.


Assuntos
Transformação Celular Neoplásica , Neuroblastoma , Humanos , Animais , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular , Neuroblastoma/patologia , Carcinogênese , Ubiquitinação/genética
4.
Crit Rev Food Sci Nutr ; : 1-30, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37096460

RESUMO

Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.

5.
Phytomedicine ; 109: 154621, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610139

RESUMO

BACKGROUND: Tripterygium wilfordii Hook. F (TWHF) is used as a traditional Chinese medicine, called thunder god vine, based on its efficacy for treating inflammatory diseases. However, its hepatotoxicity has limited its clinical application. Triptolide (TP) is the major active and toxic component of TWHF. Previous studies reported that a toxic pretreatment dose of TP leads to hepatic intolerance to exogenous lipopolysaccharide (LPS) stimulation, and to acute liver failure, in mice, but the immune mechanisms of TP-sensitised hepatocytes and the TP-induced excessive immune response to LPS stimulation are unknown. PURPOSE: To identify both the key immune cell population and mechanism involved in TP-induced hepatic intolerance of exogenous LPS. STUDY DESIGN: In vitro and in vivo experiments were conducted to investigate the inhibitory signal of natural killer (NK) cells maintained in hepatocytes, and the ability of TP to impair that signal. METHODS: Flow cytometry was performed to determine NK cell activity and hepatocyte histocompatibility complex (MHC) class I molecules expression; the severity of liver injury was determined based on blood chemistry values, and drug- or cell-mediated hepatocellular damage, by measuring lactate dehydrogenase (LDH) release. In vivo H-2Kb transduction was carried out using an adeno-associated viral vector. RESULTS: Interferon (IFN)-γ-mediated necroptosis occurred in C57BL/6N mice treated with 500 µg TP/kg and 0.1 mg LPS/kg to induce fulminant hepatitis. Primary hepatocytes pretreated with TP were more prone to necroptosis when exposed to recombinant murine IFN-γ. In mice administered TP and LPS, the intracellular IFN-γ levels of NK cells increased significantly. Subsequent study confirmed that NK cells were activated and resulted in potent hepatocellular toxicity. In vivo and in vitro TP administration significantly inhibited MHC class I molecules in murine hepatocytes. An in vitro analysis demonstrated the susceptibility of TP-pretreated hepatocytes to NK-cell-mediated cytotoxicity, an effect that was significantly attenuated by the induction of hepatocyte MHC-I molecules by IFN-α. In vivo induction or overexpression of hepatocyte MHC-I also protected mouse liver against TP and LPS-induced injury. CONCLUSION: The TP-induced inhibition of hepatocyte MHC-I molecules expression leads to hepatic intolerance to exogenous LPS and NK-cell mediated cytotoxicity against self-hepatocytes. These findings shed light on the toxicity of traditional Chinese medicines administered for their immunomodulatory effects.


Assuntos
Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Fenantrenos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais , Lipopolissacarídeos , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos C57BL , Fenantrenos/farmacologia , Diterpenos/farmacologia
6.
J Appl Toxicol ; 43(4): 599-614, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36328986

RESUMO

This study was designed to investigate the potential role of farnesoid X receptor (FXR) in abnormal bile acid metabolism and pyroptosis during the pathogenesis of triptolide (TP)/lipopolysaccharide (LPS)-induced hepatotoxicity. Moreover, the protective effect of obeticholic acid (OCA) was explored under this condition. In vivo, female C57BL/6 mice were administrated with OCA (40 mg/kg bw, intragastrical injection) before (500 µg/kg bw, intragastrical injection)/LPS (0.1 mg/kg bw, intraperitoneal injection) administration. In vitro, AML12 cells were treated with TP (50 nM) and TNF-α (50 ng/ml) to induce hepatotoxicity; GW4064 (5 µM) and cholestyramine (CHO) (0.1 mg/ml and 0.05 mg/ml) were introduced to explain the role of FXR/total bile acid (TBA) in it. Serum TBA level was significantly elevated, which was induced by FXR suppression. And both GW4064 and CHO intervention presented remarkable protective effects against TP/TNF-α-induced NLRP3 upregulation and pyroptosis pathway activation. Pre-administration of FXR agonist OCA successfully attenuated TP/LPS-induced severe liver injury by reducing serum bile acids accumulation and inhibiting the activation of caspase-11-GSDMD (gasdermin D) pyroptosis pathway. We have drawn conclusions that TP aggravated liver hypersensitivity to LPS and inhibited FXR-SHP (small heterodimer partner) axis, which was served as endogenous signals to activate caspase-11-GSDMD-mediated pyroptosis contributing to liver injury. OCA alleviated TP/LPS-induced liver injury accompanied by inhibiting caspase-11-GSDMD-mediated pyroptosis pathway and decreased serum TBA level. The results indicated that FXR might be an attractive therapeutic target for TP/LPS-induced hepatotoxicity, providing an effective strategy for drug-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Lipopolissacarídeos , Animais , Camundongos , Feminino , Lipopolissacarídeos/toxicidade , Piroptose , Caspases , Fator de Necrose Tumoral alfa , Camundongos Endogâmicos C57BL , Ácidos e Sais Biliares , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
7.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076977

RESUMO

Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.


Assuntos
Proteínas de Drosophila , Neoplasias , Humanos , Neoplasias/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
8.
Front Oncol ; 12: 945102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033435

RESUMO

Despite improved methods of diagnosis and the development of different treatments, mortality from lung cancer remains surprisingly high. Non-small cell lung cancer (NSCLC) accounts for the large majority of lung cancer cases. Therefore, it is important to review current methods of diagnosis and treatments of NSCLC in the clinic and preclinic. In this review, we describe, as a guide for clinicians, current diagnostic methods and therapies (such as chemotherapy, chemoradiotherapy, targeted therapy, antiangiogenic therapy, immunotherapy, and combination therapy) for NSCLC.

9.
Front Pharmacol ; 13: 908713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721107

RESUMO

Neuroblastoma (NB), as the most common extracranial solid tumor in childhood, is one of the critical culprits affecting children's health. Given the heterogeneity and invisibility of NB tumors, the existing diagnostic and therapeutic approaches are inadequate and ineffective in early screening and prognostic improvement. With the rapid innovation and development of nanotechnology, nanomedicines have attracted widespread attention in the field of oncology research for their excellent physiological and chemical properties. In this review, we first explored the current common obstacles in the diagnosis and treatment of NB. Then we comprehensively summarized the advancements in nanotechnology-based multimodal synergistic diagnosis and treatment of NB and elucidate the underlying mechanisms. In addition, a discussion of the pending challenges in biocompatibility and toxicity of nanomedicine was conducted. Finally, we described the development and application status of nanomaterials against some of the recognized targets in the field of NB research, and pointed out prospects for nanomedicine-based precision diagnosis and therapy of NB.

10.
Front Pharmacol ; 13: 818891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401196

RESUMO

Epigenetic modifications, specifically acetylation of histone plays a decisive role in gene regulation and transcription of normal cellular mechanisms and pathological conditions. The bromodomain and extraterminal (BET) proteins (BRD2, BRD3, BRD4, and BRDT), being epigenetic readers, ligate to acetylated regions of histone and synchronize gene transcription. BET proteins are crucial for normal cellular processing as they control cell cycle progression, neurogenesis, differentiation, and maturation of erythroids and spermatogenesis, etc. Research-based evidence indicated that BET proteins (mainly BRD4) are associated with numeral pathological ailments, including cancer, inflammation, infections, renal diseases, and cardiac diseases. To counter the BET protein-related pathological conditions, there are some BET inhibitors developed and also under development. BET proteins are a topic of most research nowadays. This review, provides an ephemeral but comprehensive knowledge about BET proteins' basic structure, biochemistry, physiological roles, and pathological conditions in which the role of BETs have been proven. This review also highlights the current and future approaches to pledge BET protein-related pathologies.

11.
Front Oncol ; 11: 778492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858857

RESUMO

Iron is an essential trace element for the human body, and its deficiency or excess can induce a variety of biological processes. Plenty of evidences have shown that iron metabolism is closely related to the occurrence and development of tumors. In addition, iron plays an important role in cell death, which is very important for the development of potential strategies for tumor treatment. Here, we reviewed the latest research about iron metabolism disorders in various types of tumors, the functions and properties of iron in ferroptosis and ferritinophagy, and new opportunities for iron-based on treatment methods for tumors, providing more information regarding the prevention and treatment of tumors.

12.
Front Pharmacol ; 12: 766909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790130

RESUMO

The inflammatory factor IL6 secreted by bone marrow mesenchymal stem cells (BMSCs) in the tumor microenvironment (TME) facilitates the survival and therapeutic resistance of neuroblastoma (NB). Here, we found that IL6 expression in primary tumor tissues or bone marrow (BM) metastases was closely associated with the disease risk and prognosis of NB patients. IL6 secretion from immortalized BMSC (iBMSC) was directly regulated by NB cells and is involved in promoting the proliferation and metastasis of NB cells. Beta-Lapachone (ARQ-501, LPC), an ortho-naphthoquinone natural product, significantly prevented the iBMSC-induced malignant transformation effect on NB cells through suppressing the expression and secretion of IL6 from iBMSC in vitro and in vivo. Mechanistically, LPC disrupted the crosstalk between NB cells and iBMSC in an NQO1-dependent manner through blocking the Gal-3/Gal-3BP/IL6 axis. Our results reveal the effect of iBMSC-derived IL6 on TME-induced malignant transformation of NB cells, and provide theoretical basis for the clinical application of LPC as a potential IL6 inhibitor in high-risk refractory NB patients.

13.
Acta Pharm Sin B ; 10(5): 861-877, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32528833

RESUMO

Previously, we proposed a new perspective of triptolide (TP)-associated hepatotoxicity: liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. However, the mechanisms for TP/LPS-induced hepatotoxicity remained elusive. The present study aimed to clarify the role of LPS in TP/LPS-induced hepatotoxicity and the mechanism by which TP induces liver hypersensitivity upon LPS stimulation. TNF-α inhibitor, etanercept, was injected intraperitoneally into mice to investigate whether induction of TNF-α by LPS participated in the liver injury induced by TP/LPS co-treatment. Mice and hepatocytes pretreated with TP were stimulated with recombinant TNF-α to assess the function of TNF-α in TP/LPS co-treatment. Additionally, time-dependent NF-κB activation and NF-κB-mediated pro-survival signals were measured in vivo and in vitro. Finally, overexpression of cellular FLICE-inhibitory protein (FLIP), the most potent NF-κB-mediated pro-survival protein, was measured in vivo and in vitro to assess its function in TP/LPS-induced hepatotoxicity. Etanercept counteracted the toxic reactions induced by TP/LPS. TP-treatment sensitized mice and hepatocytes to TNF-α, revealing the role of TNF-α in TP/LPS-induced hepatotoxicity. Mechanistic studies revealed that TP inhibited NF-κB dependent pro-survival signals, especially FLIP, induced by LPS/TNF-α. Moreover, overexpression of FLIP alleviated TP/LPS-induced hepatotoxicity in vivo and TP/TNF-α-induced apoptosis in vitro. Mice and hepatocytes treated with TP were sensitive to TNF-α, which was released from LPS-stimulated immune cells. These and other results show that the TP-induced inhibition of NF-κB-dependent transcriptional activity and FLIP production are responsible for liver hypersensitivity.

14.
Int Immunopharmacol ; 75: 105754, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31352325

RESUMO

Triptolide (TP), the major active compound derived from the traditional Chinese medicine Tripterygium wilfordii Hook. F, possesses an excellent pharmacological profile of immunomodulatory and anti-tumor activities. However, the application of TP was restricted due to its narrow therapeutic window and side effects, especially its hepatotoxicity. This study was designed to investigate the role of inflammasome in TP-induced acute liver toxicity. After the administration of TP at the dose of 600 µg/kg for 12 h or 24 h, we examined the serum biochemical parameters, liver histopathological changes, the expression of liver inflammatory factors, and the activation of NLRP3 inflammasome. Mice treated with TP displayed liver injury with a time-dependent increase of serum transaminases and activation of NLRP3 inflammasome, accompanied by the elevation of neutrophils infiltration. Further results implied that the activation of TLR4-Myd88-NF-κB pathway and oxidative stress induced by a single dose of TP (600 µg/kg) might participate in the activation of NLRP3 inflammasome. To investigate whether the activation of inflammasome participates in the liver damage induced by TP, a single dose of Ac-Yvad-Cmk (Caspase-1 inhibitor) was injected before TP administration. Ac-Yvad-Cmk pretreatment effectively prevented the increase of Cleaved Caspase-1 and inhibited the maturity of IL-1ß. Additional studies revealed that Ac-Yvad-Cmk pretreatment decreased the recruitment of neutrophils and inhibited the production of massive pro-inflammatory factors. Taken together, our results revealed that activation of inflammasome aggravated the acute liver toxicity induced by TP. Inhibition of inflammasome could serve as a novel therapeutic target for the amelioration of TP-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Diterpenos , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fenantrenos , Doença Aguda , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/genética , Compostos de Epóxi , Feminino , Fígado/imunologia , Fígado/patologia , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Inibidor de NF-kappaB alfa/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Estresse Oxidativo , Receptor 4 Toll-Like/genética
15.
Toxicol Appl Pharmacol ; 362: 150-158, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419252

RESUMO

8-methoxypsoralen (8-MOP) with ultraviolet A radiation therapy (PUVA) is the standard therapy for patients with psoriasis, despite the reported potential risks of 8-MOP-induced cholestatic liver injury in both humans and animals. Usually, patients with chronic cholestasis exhibit lower serum 25-hydroxy vitamin D (25(OH)D) levels. But those patients receiving PUVA for psoriasis showed an increase in serum 25(OH)D levels, probably highlighting that the vitamin D-vitamin D nuclear receptor (VD-VDR) axis play a protective role in 8-MOP-induced hepatotoxicity. The present study confirmed 8-MOP could increase serum 25(OH)D levels in conventional lighting and diet (CLD) and vitamin D deficient (VDD) Sprague-Dawley rats. Potential liver risks were also found in CLD and VDD rats after 8-MOP treatment. We proved that 8-MOP could be a potent ligand for VDR using molecular docking and luciferase report assay. Effect of 8-MOP on VDR subcellular distribution was determined using human liver cell line L02. We found 8-MOP could increase VDR protein expression in the nuclear and cytosol extracts and also total cell extracts in L02. siRNAs for VDR were used to determine the role of VDR in protecting 8-MOP-induced cholestasis and potential cellular mechanisms. The results showed 8-MOP could affect the CYP7A1, SHP and MRP3 expression via VDR, and such effects could be reversed by knockdown of VDR expression, suggesting a vital role of VDR involved in 8-MOP-regulated bile acid synthesis and transportation. In conclusion, these results revealed activation of VD-VDR axis may play a beneficial role in 8-MOP-mediated regulation of bile acid synthesis and transportation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Metoxaleno/toxicidade , Fármacos Fotossensibilizantes/toxicidade , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Animais , Linhagem Celular , Feminino , Homeostase , Humanos , Fígado/efeitos dos fármacos , Modelos Moleculares , Ratos Sprague-Dawley , Receptores de Calcitriol/genética , Deficiência de Vitamina D/metabolismo
16.
Exp Cell Res ; 357(2): 211-221, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28532652

RESUMO

Upregulation of glycolysis was often observed in human HER2-overexpressing cancers. In this study, we demonstrated that KU004, a dual novel EGFR/HER2 inhibitor, disrupted cancer cell proliferation via modulation of glycolysis. KU004, inhibited the Warburg effect by suppressing hexokinase II (HK2) expression at the transcriptional and post-translational levels. Further study demonstrated that the downregulation of HKII by KU004 was mainly mediated by the PI3K/Akt signaling pathway. Furthermore, the role of HKII downregulation in KU004-mediated antitumor effect was also confirmed in our in vivo xenograft model. Collectively, these data suggest that multifaceted targeting the aberrant glucose metabolism along with the upstream HER2 may be an effective approach for clinical treatment against HER2+ cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Óxidos P-Cíclicos/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Apoptosis ; 20(12): 1599-612, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26437915

RESUMO

Human epidermal growth factor receptor 2 (HER2) is a validated therapeutic target in cancer therapy, and HER2 protein-tyrosine kinase inhibitors have attracted considerable attention in the field of searching for novel anticancer drug candidates. In this study, we investigated the anticancer effect of KU004, a novel dual EGFR and HER2 inhibitor in vitro and in vivo. In vitro, KU004 preferentially inhibited the growth of HER2-overexpressing breast and gastric cell lines and HER2 expression level significantly correlated with response to KU004. It blocked activation of EGFR, HER2 and downstream Akt and Erk and induced G0/G1 arrest which was associated with downregulation of p53, p21, cyclin D1 and CDK4 along with increase of p27 and dephosphorylation of pRb. Apoptosis occurred in a caspase-dependent manner mainly via the extrinsic apoptotic pathway after KU004 treatment. The in vitro efficacy of KU004 was comparable to that of lapatinib. Moreover, KU004 suppressed the growth of NCI-N87 tumor and induced apoptosis without causing apparent weight loss or obvious toxicity. Tumor volume was significantly smaller in KU004-treated group than that in lapatinib-treated group at comparable dose levels. Taken together, these findings demonstrate KU004 can be expected to be a promising anti-HER2 candidate.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Fase G1/efeitos dos fármacos , Humanos , Lapatinib , Quinazolinas/farmacologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico
18.
Oncotarget ; 6(26): 21865-77, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26068969

RESUMO

Increased lipogenesis and protein synthesis is a hallmark of cancer cell proliferation, survival, and metastatic progression and is under intense investigation as a potential antineoplastic target. Acetyltanshinone IIA (ATA) is a compound that was obtained from chemical modifications of tanshinone IIA (TIIA), a potent anticancer agent extracted from the dried roots of the Chinese herbal medicine Salvia miltiorrhiza Bunge. A previous investigation indicated that ATA is more effective in inhibiting the growth of breast cancer especially cells with HER2 overexpression. However, the molecular mechanism(s) mediating this cytotoxic effect on HER2-positive breast cancer remained undefined. Studies described here report that ATA induced G1/S phase arrest and apoptosis in the HER2-positive MDA-MB-453, SK-BR-3, and BT-474 breast cancer cell lines. Mechanistic investigations revealed that the ATA-induced apoptosis effect is associated with remarkably down-regulation of receptor tyrosine kinases (RTKs) EGFR/HER2 and inhibition of their downstream pro-survival signaling pathways. Interestingly, ATA was found to trigger oxidative and endoplasmic reticulum (ER) stresses and to activate AMP activated protein kinase (AMPK) leading to inactivation of key enzymes involved in lipid and protein biogenesis. Intraperitoneal administration of ATA significantly inhibited the growth of MDA-MB-453 xenografts in athymic mice without causing weight loss and any other side effects. Additionally, transwell migration, invasion, and wound healing assays revealed that ATA could suppress tumor angiogenesis in vitro. Taken together, our data suggest that ATA may have broad utility in the treatment of HER2-overexpressed breast cancers.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Fenantrenos/farmacologia , Receptor ErbB-2/biossíntese , Animais , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Lipídeos/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estresse Oxidativo/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA