Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 12(6): 1490-1501, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38329387

RESUMO

Cross-presentation, exogenous antigen presentation onto major histocompatibility complex class I molecules on antigen presenting cells, is crucially important for inducing antigen-specific cellular immune responses for cancer immunotherapy and for the treatment of infectious diseases. One strategy to induce cross-presentation is cytosolic delivery of an exogenous antigen using fusogenic or endosomolytic molecule-introduced nanocarriers. Earlier, we reported liposomes modified with pH-responsive polymers to achieve cytosolic delivery of an antigen. Polyglycidol-based or polysaccharide-based pH-responsive polymers can provide liposomes with delivery performance of antigenic proteins into cytosol via membrane fusion with endosomes responding to acidic pH, leading to induction of cross-presentation. Mannose residue was introduced to pH-responsive polysaccharides to increase uptake selectivity to antigen presenting cells and to improve cross-presentation efficiency. However, direct introduction of mannose residue into pH-responsive polysaccharides suppressed cytoplasmic delivery performance of liposomes. To avoid such interference, for this study, mannose-containing glycans were incorporated separately into pH-responsive polysaccharide-modified liposomes. Soybean agglutinin-derived glycopeptide was used as a ligand for lectins on antigen presenting cells. Incorporation of glycopeptide significantly increased the cellular uptake of liposomes by dendritic cell lines and increased cross-presentation efficiency. Liposomes incorporated both glycopeptide and pH-responsive polysaccharides exhibited strong adjuvant effects in vitro and induced the increase of dendritic cells, M1 macrophages, and effector T cells in the spleen. Subcutaneous administration of these liposomes induced antigen-specific cellular immunity, resulting in strong therapeutic effects in tumor-bearing mice. These results suggest that separate incorporation of glycopeptides and pH-responsive polysaccharides into antigen-loaded liposomes is an effective strategy to produce liposome-based nanovaccines to achieve antigen cross-presentation and induction of cellular immunity towards cancer immunotherapy.


Assuntos
Lipossomos , Neoplasias , Animais , Camundongos , Lipossomos/química , Apresentação de Antígeno , Apresentação Cruzada , Glicopeptídeos/farmacologia , Manose/farmacologia , Antígenos/química , Neoplasias/terapia , Polímeros/química , Concentração de Íons de Hidrogênio , Polissacarídeos/química , Células Dendríticas , Camundongos Endogâmicos C57BL
2.
FASEB J ; 37(11): e23228, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37815518

RESUMO

The tumor microenvironment (TME) strongly affects the clinical outcomes of immunotherapy. This study aimed to activate the antitumor immune response by manipulating the TME by transfecting genes encoding relevant cytokines into tumor cells using a synthetic vehicle, which is designed to target tumor cells and promote the expression of transfected genes. Lung tumors were formed by injecting CT26.WT intravenously into BALB/c mice. Upon intravenous injection of the green fluorescent protein-coding plasmid encapsulated in the vehicle, 14.2% tumor-specific expression was observed. Transfection of the granulocyte-macrophage colony-stimulating factor (GM-CSF) and CD40 ligand (L)-plasmid combination and interferon gamma (IFNγ) and CD40L-plasmid combination showed 45.5% and 54.5% complete remission (CR), respectively, on day 60; alternate treatments with both the plasmid combinations elicited 66.7% CR, while the control animals died within 48 days. Immune status analysis revealed that the density of dendritic cells significantly increased in tumors, particularly after GM-CSF- and CD40L-gene transfection, while that of regulatory T cells significantly decreased. The proportion of activated killer cells and antitumoral macrophages significantly increased, specifically after IFNγ and CD40L transfection. Furthermore, the level of the immune escape molecule programmed death ligand-1 decreased in tumors after transfecting these cytokine genes. As a result, tumor cell-specific transfection of these cytokine genes by the synthetic vehicle significantly promotes antitumor immune responses in the TME, a key aim for visceral tumor therapy.


Assuntos
Ligante de CD40 , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Ligante de CD40/genética , Interferon gama/genética , Citocinas/genética , Camundongos Endogâmicos BALB C , Imunidade
3.
J Control Release ; 362: 767-776, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36244508

RESUMO

Antigen carriers that can selectively deliver antigens to antigen presenting cells and which can simultaneously activate these cells (adjuvant property) are necessary for efficient cancer immunotherapy or vaccination. Delivery of a model antigen into dendritic cell cytosol has been achieved by pH-responsive polymer-modified liposomes via destabilization of endosomal membranes responding to acidic pH, which impelled antigen-specific cellular immunity. Furthermore, ß-glucan-based pH-responsive polysaccharides have shown not only cytosolic antigen delivery performance but also adjuvant property, which further heightened cellular immune responses. Because pH-responsive polysaccharides have anionic carboxy groups, cationic lipid was introduced to liposomes in this study to improve the modification efficiency of pH-responsive polysaccharides and to improve their adjuvanticity and immunity-inducing functions. Introduction of cationic lipids increased the amounts of polysaccharide derivatives on the liposome and increased the cellular association of the liposomes to dendritic cells. Liposomes containing ß-glucan-based pH-responsive polysaccharides and cationic lipids increased cytokine production from dendritic cells much more than other polysaccharide derivatives did. Furthermore, through improvement of intra-tumoral immunosuppression and induction of antigen-specific cellular immunity, administering these liposomes impelled tumor suppression even with a small antigen dose. These results suggest that introducing cationic lipids and using pH-responsive polysaccharides having intrinsically adjuvant function are effective for producing liposomal nanovaccines showing strong immunity-inducing function.

4.
J Funct Biomater ; 15(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38248681

RESUMO

Non-viral gene delivery systems are typically designed vector systems with contradictory properties, namely sufficient stability before cellular uptake and instability to ensure the release of nucleic acid cargoes in the transcription process after being taken up into cells. We reported previously that poly-(L-lysine) terminally bearing a multi-arm PEG (maPEG-PLL) formed nanofiber-polyplexes that suppressed excessive DNA condensation via steric repulsion among maPEGs and exhibited effective transcriptional capability in PCR amplification experiments and a cell-free gene expression system. In this study, the reversible stabilization of a nanofiber-polyplex without impairing the effective transcriptional capability was investigated by introducing cross-links between the PLL side chains within the polyplex using a cross-linking reagent with disulfide (SS) bonds that can be disrupted under reducing conditions. In the presence of dextran sulfate and/or dithiothreitol, the stability of the polyplex and the reactivity of the pDNA were evaluated using agarose gel electrophoresis and real-time PCR. We succeeded in reversibly stabilizing nanofiber-polyplexes using dithiobis (succinimidyl propionate) (DSP) as the cross-linking reagent. The effect of the reversible stabilization was confirmed in experiments using cultured cells, and the DSP-crosslinked polyplexes exhibited gene expression superior to that of polyethyleneimine polyplexes, which are typical polyplexes.

5.
Vaccines (Basel) ; 10(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36560459

RESUMO

In view of the severe downsides of conventional cancer therapies, the quest of developing alternative strategies still remains of critical importance. In this regard, antigen cross-presentation, usually employed by dendritic cells (DCs), has been recognized as a potential solution to overcome the present impasse in anti-cancer therapeutic strategies. It has been established that an elevated cytotoxic T lymphocyte (CTL) response against cancer cells can be achieved by targeting receptors expressed on DCs with specific ligands. Glycans are known to serve as ligands for C-type lectin receptors (CLRs) expressed on DCs, and are also known to act as a tumor-associated antigen (TAA), and, thus, can be harnessed as a potential immunotherapeutic target. In this scenario, integrating the knowledge of cross-presentation and glycan-conjugated nanovaccines can help us to develop so called 'glyco-nanovaccines' (GNVs) for targeting DCs. Here, we briefly review and analyze the potential of GNVs as the next-generation anti-tumor immunotherapy. We have compared different antigen-presenting cells (APCs) for their ability to cross-present antigens and described the potential nanocarriers for tumor antigen cross-presentation. Further, we discuss the role of glycans in targeting of DCs, the immune response due to pathogens, and imitative approaches, along with parameters, strategies, and challenges involved in cross-presentation-based GNVs for cancer immunotherapy. It is known that the effectiveness of GNVs in eradicating tumors by inducing strong CTL response in the tumor microenvironment (TME) has been largely hindered by tumor glycosylation and the expression of different lectin receptors (such as galectins) by cancer cells. Tumor glycan signatures can be sensed by a variety of lectins expressed on immune cells and mediate the immune suppression which, in turn, facilitates immune evasion. Therefore, a sound understanding of the glycan language of cancer cells, and glycan-lectin interaction between the cancer cells and immune cells, would help in strategically designing the next-generation GNVs for anti-tumor immunotherapy.

6.
Vaccine ; 40(10): 1448-1457, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131134

RESUMO

The generation of DCs with augmented functions is a strategy for obtaining satisfactory clinical outcomes in tumor immunotherapy. We developed a novel synthetic adjuvant comprising a liposome conjugated with a DC-targeting Toll-like-receptor ligand and a pH-sensitive polymer for augmenting cross-presentation. In an in vitro study using mouse DCs, these liposomes were selectively incorporated into DCs, significantly enhanced DC function and activated immune responses to present an epitope of the incorporated antigen on the major histocompatibility complex class I molecules. Immunization of mice with liposomes encapsulating a tumor antigen significantly enhanced antigen-specific cytotoxicity. In tumor-bearing mice, vaccination with liposomes encapsulating a tumor antigen elicited complete tumor remission. Furthermore, vaccination significantly enhanced cytotoxicity, targeting not only the vaccinated antigen but also the other antigens of the tumor cell. These results indicate that liposomes are an ideal adjuvant to develop DCs with considerably high potential to elicit antigen-specific immune responses; they are a promising tool for cancer therapy with neoantigen vaccination.


Assuntos
Lipossomos , Polímeros , Animais , Antígenos de Neoplasias , Células Dendríticas , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL
7.
Semin Cancer Biol ; 80: 87-106, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32068087

RESUMO

Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Apresentação de Antígeno , Células Dendríticas , Humanos , Imunoterapia , Lectinas Tipo C/química , Ligantes , Neoplasias/terapia , Lectinas de Plantas , Polissacarídeos/química
8.
J Mater Chem B ; 9(37): 7713-7724, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34545900

RESUMO

Induction of cellular immunity is important for effective cancer immunotherapy. Although various antigen carriers for cancer immunotherapy have been developed to date, balancing efficient antigen delivery to antigen presenting cells (APCs) and their activation via innate immune receptors, both of which are crucially important for the induction of strong cellular immunity, remains challenging. For this study, branched ß-glucan was selected as an intrinsically immunity-stimulating and biocompatible material. It was engineered to develop multifunctional liposomal cancer vaccines capable of efficient interactions with APCs and subsequent activation of the cells. Hydroxy groups of branched ß-glucan (Aquaß) were modified with 3-methylglutaric acid ester and decyl groups, respectively, to provide pH-sensitivity and anchoring capability to the liposomal membrane. The modification efficiency of Aquaß derivatives to the liposomes was significantly high compared with linear ß-glucan (curdlan) derivatives. Aquaß derivative-modified liposomes released their contents in response to weakly acidic pH. As a model antigenic protein, ovalbumin (OVA)-loaded liposomes modified with Aquaß derivatives interacted efficiently with dendritic cells, and induced inflammatory cytokine secretion from the cells. Subcutaneous administration of Aquaß derivative-modified liposomes suppressed the growth of the E.G7-OVA tumor significantly compared with curdlan derivative-modified liposomes. Aquaß derivative-modified liposomes induced the increase of CD8+ T cells, and polarized macrophages to the antitumor M1-phenotype within the tumor microenvironment. Therefore, pH-sensitive Aquaß derivatives can be promising materials for liposomal antigen delivery systems to induce antitumor immune responses efficiently.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Materiais Biocompatíveis/química , Lipossomos/química , beta-Glucanas/química , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Materiais Biocompatíveis/farmacologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Imunidade Celular , Imunoterapia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Neoplasias/terapia , Ovalbumina/genética , Ovalbumina/imunologia , Ovalbumina/metabolismo , Microambiente Tumoral , beta-Glucanas/metabolismo
9.
Mol Pharm ; 18(9): 3290-3301, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34365796

RESUMO

The antimicrobial protein CAP18 (approximate molecular weight: 18 000), which was first isolated from rabbit granulocytes, comprises a C-terminal fragment that has negatively charged lipopolysaccharide binding activity. In this study, we found that CAP18 (106-121)-derived (sC18)2 peptides have macropinocytosis-inducible biological functions. In addition, we found that these peptides are highly applicable for use as extracellular vesicle (exosomes, EV)-based intracellular delivery, which is expected to be a next-generation drug delivery carrier. Here, we demonstrate that dimerized (sC18)2 peptides can be easily introduced on EV membranes when modified with a hydrophobic moiety, and that they show high potential for enhanced cellular uptake of EVs. By glycosaminoglycan-dependent induction of macropinocytosis, cellular EV uptake in targeted cells was strongly increased by the peptide modification made to EVs, and intriguingly, our herein presented technique is efficiently applicable for the cytosolic delivery of the biologically cell-killing functional toxin protein, saporin, which was artificially encapsulated in the EVs by electroporation, suggesting a useful technique for EV-based intracellular delivery of biofunctional molecules.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos/métodos , Exossomos/química , Saporinas/administração & dosagem , Animais , Células CHO , Cricetulus , Composição de Medicamentos/métodos , Células HeLa , Humanos , Células MCF-7 , Catelicidinas
10.
Mol Pharm ; 18(9): 3342-3351, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34324363

RESUMO

Poor distribution of nanocarriers at the tumor site and insufficient drug penetration into the tissue are major challenges in the development of effective and safe cancer therapy. Here, we aim to enhance the therapeutic effect of liposomes by accumulating doxorubicin-loaded liposomes at high concentrations in and around the tumor, followed by heat-triggered drug release to facilitate low-molecular-weight drug penetration throughout the tumor. A cyclic RGD peptide (cRGD) was incorporated into liposomes decorated with a thermosensitive polymer that allowed precise tuning of drug release temperature (i.e., Polymer-lip) to develop a targeted thermosensitive liposome (cRGD-Polymer-lip). Compared with conventional thermosensitive liposomes, cRGD-Polymer-lip enhanced the binding of liposomes to endothelial cells, leading to their accumulation at the tumor site upon intravenous administration in tumor-bearing mice. Drug release triggered by local heating strongly inhibited tumor growth. Notably, tumor remission was achieved via multiple administrations of cRGD-Polymer-lip and heat treatments. Thus, combining the advantages of tumor neovascular targeting and heat-triggered drug release, these liposomes offer high potential for minimally invasive and effective cancer chemotherapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas/química , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Feminino , Temperatura Alta , Humanos , Lipossomos , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/patologia , Peptídeos Cíclicos/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polímeros/química
11.
Bioconjug Chem ; 32(3): 563-571, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33660999

RESUMO

RNA interference (RNAi) using siRNA has gained much attention for use in therapies for cancer and genetic disorders. To establish RNAi-based therapeutics, the development of efficient siRNA nanocarriers is desired. Earlier, we developed polyamidoamine dendron-bearing lipids able to form complexes with nucleic acids as gene vectors. Especially, dendron lipids with unsaturated alkyl chains (DL-G1-U2) induced efficient endosomal escape by membrane fusion, leading to efficient transfection in vitro. For this study, dendron lipids having oleyl/linoleyl groups (DL-G1-U3) were designed to increase membrane fusogenic activity further. Indeed, DL-G1-U3/siRNA complexes achieved higher membrane fusogenic activity and knockdown of the target gene more efficiently than conventional DL-G1-U2/siRNA complexes did. A hydrophilic polymer, hyperbranched polyglycidol lauryl ester (HPG-Lau), was modified further on the surface of DL-G1-U3/siRNA complexes to provide colloidal stability. Surface modification of HPG-Lau increased the colloidal stability in a physiological condition more than complexes without HPG-Lau. Importantly, HPG-Lau-coated DL/siRNA complexes showed identical RNAi effects to those of parental DL/siRNA complexes, whereas the RNAi activity of poly(ethylene glycol)-bearing lipid (PEG-PE)-modified DL/siRNA complexes was hindered completely. Introduction of unsaturated bonds into dendron lipids and selection of suitable hydrophilic polymers for nanocarrier modification are important for obtaining efficient siRNA vectors toward in vivo siRNA delivery.


Assuntos
Coloides/química , Dendrímeros/química , Lipídeos/química , Poliaminas/química , Polímeros/química , Interferência de RNA , RNA Interferente Pequeno/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas
12.
Biomater Sci ; 9(8): 3076-3089, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33681873

RESUMO

For the establishment of advanced medicines such as cancer immunotherapy, high performance carriers that precisely deliver biologically active molecules must be developed to target organelles of the cells and to release their contents there. From the viewpoint of antigen delivery, endosomes are important target organelles because they contain immune-response-related receptors and proteins of various types. To obtain carriers for precision endosome delivery, a novel type of polyamidoamine dendron-based lipid having pH-sensitive terminal groups was synthesized for this study. Liposomes were prepared using these pH-sensitive dendron-based lipids and egg yolk phosphatidylcholine. Their pH-responsive properties and performance as an endosome delivery carrier were investigated. pH-Sensitive dendron lipid-based liposomes retained water-soluble molecules at neutral pH but released them under weakly acidic conditions. Particularly, liposomes containing CHexDL-G1U exhibited highly sensitive properties responding to very weakly acidic pH. These dendron lipid-based liposomes released the contents specifically in the endosome. The timing of content release can be controlled by selecting pH-sensitive dendron lipids for liposome preparation. Significant tumor regression was induced in tumor-bearing mice by the administration of CHexDL-G1U-modified liposomes containing the model antigenic protein. Furthermore, CHexDL-G1U-modified liposomes induced WT1 tumor antigenic peptide-specific helper T cell proliferation. The results demonstrate that dendron lipid-based liposomes are useful as a potent vaccine for cancer immunotherapy.


Assuntos
Dendrímeros , Animais , Antígenos , Concentração de Íons de Hidrogênio , Imunidade , Lipídeos , Lipossomos , Camundongos
13.
FEBS Open Bio ; 11(3): 753-767, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33533170

RESUMO

Exosomes (extracellular vesicles/EVs) participate in cell-cell communication and contain bioactive molecules, such as microRNAs. However, the detailed characteristics of secreted EVs produced by cells grown under low pH conditions are still unknown. Here, we report that low pH in the cell culture medium significantly affected the secretion of EVs with increased protein content and zeta potential. The intracellular expression level and location of stably expressed GFP-fused CD63 (an EV tetraspanin) in HeLa cells were also significantly affected by environmental pH. In addition, increased cellular uptake of EVs was observed. Moreover, the uptake rate was influenced by the presence of serum in the cell culture medium. Our findings contribute to our understanding of the effect of environmental conditions on EV-based cell-cell communication.


Assuntos
Técnicas de Cultura de Células/métodos , Vesículas Extracelulares/metabolismo , Tetraspanina 30/genética , Transporte Biológico , Comunicação Celular , Meios de Cultura/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Proteínas Recombinantes de Fusão/metabolismo , Tetraspanina 30/metabolismo
14.
Arthritis Rheumatol ; 73(5): 769-778, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33169522

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is a major autoimmune disease that causes synovitis and joint damage. Although clinical trials have been performed using interleukin-10 (IL-10), an antiinflammatory cytokine, as a potential treatment of RA, the therapeutic effects of IL-10 have been limited, potentially due to insufficient residence in lymphoid organs, where antigen recognition primarily occurs. This study was undertaken to engineer an IL-10-serum albumin (SA) fusion protein and evaluate its effects in 2 murine models of RA. METHODS: SA-fused IL-10 (SA-IL-10) was recombinantly expressed. Mice with collagen antibody-induced arthritis (n = 4-7 per group) or collagen-induced arthritis (n = 9-15 per group) were injected intravenously with wild-type IL-10 or SA-IL-10, and the retention of SA-IL-10 in the lymph nodes (LNs), immune cell composition in the paws, and therapeutic effect of SA-IL-10 on mice with arthritis were assessed. RESULTS: SA fusion to IL-10 led to enhanced accumulation in the mouse LNs compared with unmodified IL-10. Intravenous SA-IL-10 treatment restored immune cell composition in the paws to a normal status, elevated the frequency of suppressive alternatively activated macrophages, reduced IL-17A levels in the paw-draining LN, and protected joint morphology. Intravenous SA-IL-10 treatment showed similar efficacy as treatment with an anti-tumor necrosis factor antibody. SA-IL-10 was equally effective when administered intravenously, locally, or subcutaneously, which is a benefit for clinical translation of this molecule. CONCLUSION: SA fusion to IL-10 is a simple but effective engineering strategy for RA therapy and has potential for clinical translation.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Articulações do Pé/efeitos dos fármacos , Interleucina-10/farmacologia , Linfonodos/imunologia , Macrófagos/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Albumina Sérica/farmacologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Modelos Animais de Doenças , , Articulações do Pé/imunologia , Articulações do Pé/metabolismo , Articulações do Pé/patologia , Membro Posterior , Antígenos de Histocompatibilidade Classe I/metabolismo , Injeções Intravenosas , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-6/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Engenharia de Proteínas , Transporte Proteico , Receptores Fc/metabolismo , Fator de Crescimento Transformador beta/efeitos dos fármacos , Fator de Crescimento Transformador beta/imunologia , Inibidores do Fator de Necrose Tumoral/farmacologia
15.
Pharmaceutics ; 12(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796567

RESUMO

Specific delivery to antigen presenting cells (APC) and precise control of the intracellular fate of antigens are crucial to induce cellular immunity that directly and specifically attacks cancer cells. We previously achieved cytoplasmic delivery of antigen and activation of APC using carboxylated curdlan-modified liposomes, which led to the induction of cellular immunity in vivo. APCs express mannose receptors on their surface to recognize pathogen specifically and promote cross-presentation of antigen. In this study, mannose-residue was additionally introduced to carboxylated curdlan as a targeting moiety to APC for further improvement of polysaccharide-based antigen carriers. Mannose-modified curdlan derivatives were synthesized by the condensation between amino group-introduced mannose and carboxy group in pH-sensitive curdlan. Mannose residue-introduced carboxylated curdlan-modified liposomes showed higher pH-sensitivity than that of liposomes modified with conventional carboxylated curdlan. The introduction of mannose-residue to the liposomes induced aggregation in the presence of Concanavalin A, indicating that mannose residues were presented onto liposome surface. Mannose residue-introduced carboxylated curdlan-modified liposomes exhibited high and selective cellular association to APC. Furthermore, mannose residue-introduced carboxylated curdlan-modified liposomes promoted cross-presentation of antigen and induced strong antitumor effects on tumor-bearing mice. Therefore, these liposomes are promising as APC-specific antigen delivery systems for the induction of antigen-specific cellular immunity.

16.
FASEB Bioadv ; 2(1): 5-17, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32123853

RESUMO

The tumor microenvironment strongly influences clinical outcomes of immunotherapy. By transfecting genes of relevant cytokines into tumor cells, we sought to manipulate the microenvironment so as to elicit activation of T helper type 1 (Th1) responses and the maturation of dendritic cells (DCs). Using a synthetic vehicle, the efficiency of in vivo transfection of GFP-cDNA into tumor cells was about 7.5% by intratumoral injection and about 11.5% by intravenous injection. Survival was significantly improved by both intratumoral and intravenous injection of the plasmid containing cDNA of interferon-gamma, followed by intratumoral injection of DCs presenting the tumor antigens. Also, tumor growth was inhibited by these treatments. A more significant effect on survival and tumor growth inhibition was observed following injection of the plasmid containing cDNA of CD40 ligand, which is a potent inducer of DC-maturation. Furthermore, the co-injection of both IFNγ- and CD40 ligand-encoding cDNA-plasmids, followed by DC treatment, gave rise to further marked and enhancement, including 100% survival and more than 50% complete remission. This treatment regimen elicited significant increases in mature DCs and types of cells contributing to Th1 responses, and significant decreases in immune suppressor cells in the tumor. In the spleen, the treatment significantly increased activities of tumor-specific killer and natural killer cells, but no alteration was observed in mature DCs or suppressor cells. These results indicate that transfection of these cytokine genes into tumor cells significantly alter the tumor microenvironment and improve the therapeutic results of DC-based immunotherapy.

17.
J Funct Biomater ; 11(1)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183178

RESUMO

Temperature-responsive nanocarrier systems using external stimuli are one of the most widely investigated stimuli-responsive strategies because heat is easy and safe to use for hyperthermia and controlled drug delivery. Polyamidoamine dendron lipids (PAMAM-DLs) composed of PAMAM dendron as head group and two alkyl chains can exhibit temperature-responsive morphological change through the attachment of suitable moieties to terminal of PAMAM dendron. In this study, oligo(ethylene glycol)s including ethoxy- or methoxy-diethylene glycols were attached to the terminals of PAMAM-DL, and temperature-responsive properties of their self-assemblies were evaluated by calorimetric and turbidity measurements. In the evaluation of temperature-responsive properties, ethoxy diethylene glycol (EDEG)-attached PAMAM-DL composed of two saturated alkyl chains and PAMAM dendron with 1st generation had lipid bilayer structure and suitable cloud point for the application as drug carrier. In vitro performances of the assemblies combining EDEG-attached PAMAM-DLs with cholesteryl-oxy-poly(ethylene glycol) (PEG-Chol) was evaluated using doxorubicin (DOX) as an anticancer drug. Cellular uptake of DOX-loaded EDEG-attached PAMAM-DL/PEG-Chol assemblies was promoted at 42 °C rather than 37 °C, resulting in an effective decrease in cell viability.

18.
J Mater Chem B ; 8(14): 2826-2833, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32166301

RESUMO

The combination of anticancer drugs and laser hyperthermia could lead to efficient cancer treatment with less-adverse effects. This study combined anticancer drug-loaded functional dendrimers and light-responsive gold nanorods to fabricate nanohybrids that can provide anticancer-drug delivery and subsequent heat generation under near-infrared laser irradiation. A condensation reaction was used to conjugate poly(ethylene glycol)-modified polyamidoamine dendrimers to carboxylated gold nanorod surfaces. Oleoyl groups were incorporated into dendrimers to improve the drug loading capacity. Doxorubicin loading capacity was improved by incorporation of oleoyl chains into dendrimers in the nanohybrid, indicating increased hydrophobic interaction between anticancer drugs and nanohybrids. The nanohybrids exhibited heat generation properties under near infrared laser irradiation. They released anticancer drugs over time. The combination of doxorubicin-loaded nanohybrids and laser irradiation showed markedly better cytotoxicity than that of the nanohybrids used with lasers and drug-loaded nanohybrids without the use of lasers. After intravenous or intratumoral injection of nanohybrids to tumor-bearing mice, a sharp temperature increase was observed at the tumor site under laser irradiation. Especially, intratumorally injected doxorubicin-loaded nanohybrids showed almost complete tumor growth suppression under laser irradiation. The results demonstrate that functional dendrimer-gold nanorod nanohybrids are promising as multi-functional nanomaterials to achieve synergistic effects of anticancer drugs and heat ablation to support effective cancer treatments.


Assuntos
Antineoplásicos/uso terapêutico , Dendrímeros/química , Ouro/química , Nanotubos/química , Fototerapia , Poliaminas/química , Polietilenoglicóis/química , Animais , Antineoplásicos/administração & dosagem , Feminino , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos BALB C
19.
J Mater Chem B ; 8(6): 1093-1107, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31960007

RESUMO

Liposomes are a promising nanocarrier for drug delivery because of their biocompatibility and the encapsulation capacity of drugs. Liposomes can be functionalized easily by introduction of functional materials such as stimulus-responsive materials. Temperature-responsive liposomes and pH-responsive liposomes are representative stimulus-responsive liposomes that can deliver drugs to locally heated target tissues and intracellular organelles. Here, temperature-responsive liposomes for the selective release of cargo and pH-responsive liposomes for the induction of antigen-specific immunity are overviewed. Temperature-responsive polymer-modified liposomes immediately released drugs in response to heating, which achieved selective drug release at a tumour after topical heating of tumour-bearing mice. Introduction of MR-detectable molecules enabled the tracing of liposome accumulation into target sites to optimize the heating timing. These liposomes can also be combined with magnetic nanoparticles or carbon nanomaterials to attain magnetic field-responsive, electric field-responsive and light-responsive properties to support on-demand drug release or control of biological reactions using these external stimuli. pH-Responsive liposomes were produced by modification of poly(carboxylic acid) derivatives or by pH-responsive amphiphiles. These liposomes delivered antigenic proteins into the cytosol of antigen presenting cells, which induced cross-presentation and antigen-specific cellular immunity. Adjuvant molecules or bioactive polysaccharide-based pH-responsive polymers improved their immunity-inducing effect further, leading to tumour regression in tumour-bearing mice. Precise design and control of the structures of stimulus-responsive materials and combination with functional materials are expected to create novel methodologies to control biological functions and to produce highly potent liposomal drugs that can achieve selective release of bioactive molecules.


Assuntos
Materiais Biocompatíveis/síntese química , Pesquisa Biomédica , Lipossomos/síntese química , Teste de Materiais , Animais , Materiais Biocompatíveis/química , Humanos , Lipossomos/química , Tamanho da Partícula , Propriedades de Superfície
20.
Arthritis Res Ther ; 21(1): 298, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870429

RESUMO

BACKGROUND: Although disease in a majority of rheumatoid arthritis (RA) patients is often initially limited to one or a few joints, currently approved medications including anti-tumor necrosis factor-α antibody (α-TNF) are injected systemically. Given that α-TNF systemic injection typically does not cure RA and involves risk of treatment-related adverse events, one possible approach to enhance therapeutic efficacy and reduce α-TNF systemic exposure is to retain the antibodies in arthritic joints after local administration. The aim of this study was to evaluate the approach of conferring extracellular matrix (ECM) binding affinity to α-TNF antibodies in a RA model. METHODS: α-TNF was chemically conjugated with a promiscuous ECM-binding peptide derived from placenta growth factor 2 (PlGF-2123-144). The binding activity of PlGF-2123-144-conjugated α-TNF (PlGF-2123-144-α-TNF) against ECM proteins was assessed by ELISA and by immunostaining on human cartilage specimens. The effect of conjugation on antibody function was assessed as a neutralizing activity against osteoclast differentiation. Retention at the injection site and therapeutic efficacy of PlGF-2123-144-α-TNF were tested in a collagen antibody-induced arthritis (CAIA) model in the mouse. RESULTS: PlGF-2123-144 peptide conjugation conferred α-TNF with affinity to ECM proteins without impairment of antigen recognition. PlGF-2123-144-α-TNF locally injected at a paw in the CAIA model was retained for at least 96 h at the injection site, whereas unmodified α-TNF was dispersed rapidly after injection. Local treatment with unmodified α-TNF did not suppress the arthritis score relative to isotype controls. By contrast, local administration of PlGF-2123-144-α-TNF suppressed arthritis development almost completely in the treated paw even at a 1000× lower dose. CONCLUSION: These data demonstrate that retention of α-TNF in arthritic joints can suppress arthritis development and enhance therapeutic efficacy. This simple bioengineering approach of ECM-binding peptide conjugation offers a powerful and clinically translational approach to treat RA.


Assuntos
Anticorpos/imunologia , Artrite Reumatoide/imunologia , Matriz Extracelular/imunologia , Imunoconjugados/imunologia , Fator de Crescimento Placentário/imunologia , Fator de Necrose Tumoral alfa/imunologia , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/prevenção & controle , Artrite Reumatoide/metabolismo , Artrite Reumatoide/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Humanos , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Fator de Crescimento Placentário/química , Fator de Crescimento Placentário/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA