Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 29198-29209, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785397

RESUMO

Patchouli oil has exhibited remarkable efficacy in the treatment of colitis. However, its volatility and potential irritancy are often drawbacks when extensively used in clinical applications. Oil gel is a semisolid and thermoreversible system that has received extensive interest for its solubility enhancement, inhibition of bioactive component recrystallization, and the facilitation of controlled bioactive release. Therefore, we present a strategy to develop an oil gel formulation that addresses this multifaceted problem. Notably, a patchouli oil gel formulation was designed to solidify and trap patchouli oil into a spatially stable crystal-particle structure and colonic released delivery, which has an advantage of the stable structure and viscosity. The patchouli oil gel treatment of zebrafish with colitis improved goblet cells and decreased macrophages. Additionally, patchouli oil gel showed superior advantages for restoring the tissue barrier. Furthermore, our investigative efforts unveiled patchouli oil's influence on TRP channels, providing evidence for its potential role in mechanisms of anti-inflammatory action. While the journey continues, these preliminary revelations provide a robust foundation for considering the adoption of patchouli oil gel as a pragmatic intervention for managing colitis.


Assuntos
Colite , Géis , Peixe-Zebra , Animais , Géis/química , Colite/tratamento farmacológico , Colite/patologia , Colite/induzido quimicamente , Sistemas de Liberação de Medicamentos , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Camundongos , Humanos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Óleos/química
2.
Cell Rep ; 43(2): 113722, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308841

RESUMO

N-methyl-D-aspartate receptor (NMDAR)-mediated glutamate excitotoxicity significantly contributes to ischemic neuronal death and post-recanalization infarction expansion. Despite tremendous efforts, targeting NMDARs has proven unsuccessful in clinical trials for mitigating brain injury. Here, we show the discovery of an interaction motif for transient receptor potential melastatin 2 (TRPM2) and protein kinase Cγ (PKCγ) association and demonstrate that TRPM2-PKCγ uncoupling is an effective therapeutic strategy for attenuating NMDAR-mediated excitotoxicity in ischemic stroke. We demonstrate that the TRPM2-PKCγ interaction allows TRPM2-mediated Ca2+ influx to promote PKCγ activation, which subsequently enhances TRPM2-induced potentiation of extrasynaptic NMDAR (esNMDAR) activity. By identifying the PKCγ binding motif on TRPM2 (M2PBM), which directly associates with the C2 domain of PKCγ, an interfering peptide (TAT-M2PBM) is developed to disrupt TRPM2-PKCγ interaction without compromising PKCγ function. M2PBM deletion or TRPM2-PKCγ dissociation abolishes both TRPM2-PKCγ and TRPM2-esNMDAR couplings, resulting in reduced excitotoxic neuronal death and attenuated ischemic brain injury.


Assuntos
Lesões Encefálicas , Canais de Cátion TRPM , Humanos , Proteínas Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Peptídeos/metabolismo
3.
Elife ; 122023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449820

RESUMO

Cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They promote efflux of Mg2+ ions on their own and influx of divalent cations when expressed with the transient receptor potential ion channel subfamily M member 7 (TRPM7). Recently, ADP-ribosylation factor-like GTPase 15 (ARL15) has been identified as CNNM-binding partner and an inhibitor of divalent cation influx by TRPM7. Here, we characterize ARL15 as a GTP and CNNM-binding protein and demonstrate that ARL15 also inhibits CNNM2 Mg2+ efflux. The crystal structure of a complex between ARL15 and CNNM2 CBS-pair domain reveals the molecular basis for binding and allowed the identification of mutations that specifically block binding. A binding deficient ARL15 mutant, R95A, failed to inhibit CNNM and TRPM7 transport of Mg2+ and Zn2+ ions. Structural analysis and binding experiments with phosphatase of regenerating liver 2 (PRL2 or PTP4A2) showed that ARL15 and PRLs compete for binding CNNM to coordinate regulation of ion transport by CNNM and TRPM7.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Canais de Cátion TRPM , Cátions Bivalentes , Canais de Cátion TRPM/genética , Ligação Proteica , Transporte Biológico
4.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711628

RESUMO

Cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They promote efflux of Mg 2+ ions on their own or uptake of divalent cations when coupled to the transient receptor potential ion channel subfamily M member 7 (TRPM7). Recently, ADP-ribosylation factor-like GTPase 15 (ARL15) has been identified as CNNM binding partner and an inhibitor of divalent cation influx by TRPM7. Here, we characterize ARL15 as a GTP-binding protein and demonstrate that it binds the CNNM CBS-pair domain with low micromolar affinity. The crystal structure of the complex between ARL15 GTPase domain and CNNM2 CBS-pair domain reveals the molecular determinants of the interaction and allowed the identification of mutations in ARL15 and CNNM2 mutations that abrogate binding. Loss of CNNM binding prevented ARL15 suppression of TRPM7 channel activity in support of previous reports that the proteins function as a ternary complex. Binding experiments with phosphatase of regenerating liver 2 (PRL2 or PTP4A2) revealed that ARL15 and PRLs compete for binding CNNM, suggesting antagonistic regulation of divalent cation transport by the two proteins.

5.
Cell Mol Biol (Noisy-le-grand) ; 69(15): 154-159, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38279458

RESUMO

Viral pneumonia (VP) is known for its wide transmission and severe pathological damage. ninety cases of VP patients were rolled into an experimental group (group E, methylprednisolone + advanced antibiotics + antiviral drugs) and a control group (group C, methylprednisolone), with 45 cases in each group. General information about the patients, inflammatory factors, serum immunoglobulins, T lymphocyte subsets, and treatment outcomes (efficiency rate, conversion rate to negative) were compared. In group E, interleukin-6 (IL-6) (0.18±0.07) ng/L was inferior to in group C (0.33±0.09) ng/L, p<0.05; tumor necrosis factor-alpha (TNF-α) (17.22±4.13) ng/L was inferior to group C (26.07±4.08) ng/L, p<0.05; lgA (0.81±0.22) g/L was superior to in group C (0.68±0.17) g/L, P<0.05; lgM (1.62±0.13) g/L was superior to group C (1.09±0.03) g/L, p<0.05; lgE (0.19±0.02) g/L was inferior to group C (0.23±0.03) g/L, p<0.05; CD4+/CD8+ ratio (1.71±0.33) was superior to group C (1.24±0.43), p<0.05; the total efficiency rate in group C (77.78%) was inferior to group E (97.78%), p<0.05; the conversion rate to negative of viral antigens in group E (91.11%) was superior to in group C (64.44%), p<0.05. methylprednisolone in combination with advanced antibiotics and antiviral drugs is an effective treatment approach for VP.


Assuntos
Metilprednisolona , Pneumonia Viral , Humanos , Metilprednisolona/uso terapêutico , Antivirais/uso terapêutico , Interleucina-6 , Fator de Necrose Tumoral alfa , Imunoglobulinas
6.
Arterioscler Thromb Vasc Biol ; 42(10): 1229-1241, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35861069

RESUMO

BACKGROUND: Regulation of vascular permeability is critical to maintaining tissue metabolic homeostasis. VEGF (vascular endothelial growth factor) is a key stimulus of vascular permeability in acute and chronic diseases including ischemia reperfusion injury, sepsis, and cancer. Identification of novel regulators of vascular permeability would allow for the development of effective targeted therapeutics for patients with unmet medical need. METHODS: In vitro and in vivo models of VEGFA-induced vascular permeability, pathological permeability, quantitation of intracellular calcium release and cell entry, and phosphatidylinositol 4,5-bisphosphate levels were evaluated with and without modulation of PLC (phospholipase C) ß2. RESULTS: Global knock-out of PLCß2 in mice resulted in blockade of VEGFA-induced vascular permeability in vivo and transendothelial permeability in primary lung endothelial cells. Further work in an immortalized human microvascular cell line modulated with stable knockdown of PLCß2 recapitulated the observations in the mouse model and primary cell assays. Additionally, loss of PLCß2 limited both intracellular release and extracellular entry of calcium following VEGF stimulation as well as reduced basal and VEGFA-stimulated levels of phosphatidylinositol 4,5-bisphosphate compared to control cells. Finally, loss of PLCß2 in both a hyperoxia-induced lung permeability model and a cardiac ischemia:reperfusion model resulted in improved animal outcomes when compared with wild-type controls. CONCLUSIONS: The results implicate PLCß2 as a key positive regulator of VEGF-induced vascular permeability through regulation of both calcium flux and phosphatidylinositol 4,5-bisphosphate levels at the cellular level. Targeting of PLCß2 in a therapeutic setting may provide a novel approach to regulating vascular permeability in patients.


Assuntos
Permeabilidade Capilar , Fosfatidilinositol 4,5-Difosfato , Fosfolipase C beta , Mucosa Respiratória , Fator A de Crescimento do Endotélio Vascular , Animais , Cálcio/metabolismo , Permeabilidade Capilar/genética , Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Humanos , Pulmão/metabolismo , Camundongos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Fosfolipase C beta/fisiologia , Mucosa Respiratória/metabolismo
7.
Neuron ; 110(12): 1944-1958.e8, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421327

RESUMO

Excitotoxicity induced by NMDA receptor (NMDAR) activation is a major cause of neuronal death in ischemic stroke. However, past efforts of directly targeting NMDARs have unfortunately failed in clinical trials. Here, we reveal an unexpected mechanism underlying NMDAR-mediated neurotoxicity, which leads to the identification of a novel target and development of an effective therapeutic peptide for ischemic stroke. We show that NMDAR-induced excitotoxicity is enhanced by physical and functional coupling of NMDAR to an ion channel TRPM2 upon ischemic insults. TRPM2-NMDAR association promotes the surface expression of extrasynaptic NMDARs, leading to enhanced NMDAR activity and increased neuronal death. We identified a specific NMDAR-interacting motif on TRPM2 and designed a membrane-permeable peptide to uncouple the TRPM2-NMDAR interaction. This disrupting peptide protects neurons against ischemic injury in vitro and protects mice against ischemic stroke in vivo. These findings provide an unconventional strategy to mitigate excitotoxic neuronal death without directly targeting NMDARs.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Canais de Cátion TRPM , Animais , Camundongos , N-Metilaspartato/farmacologia , Peptídeos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Canais de Cátion TRPM/genética
9.
PLoS Biol ; 19(12): e3001496, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928937

RESUMO

Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel's pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs' control of cellular Mg2+ homeostasis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ciclinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Cátions Bivalentes/metabolismo , Linhagem Celular Tumoral , Ciclinas/fisiologia , Células HEK293 , Humanos , Magnésio/metabolismo , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/fisiologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/fisiologia
10.
Transl Res ; 233: 127-143, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33691194

RESUMO

Ophiocordyceps sinensis (OCS), an entomopathogenic fungus, is known to exert antiproliferative and antitissue remodeling effects. Vascular remodeling and vasoconstriction play critical roles in the development of pulmonary hypertension (PH). The therapeutic potential of OCS for PH was investigated using rodent PH models, and cultured pulmonary artery endothelial and smooth muscle cells (PAECs and PASMCs), with a focus on the involvement of TRPM7. OCS ameliorated the development of PH, right ventricular hypertrophy and dysfunction in the monocrotaline-induced PH rats. The genetic knockout of TRPM7 attenuated the development of PH in mice with monocrotaline pyrrole-induced PH. TRPM7 was associated with medial hypertrophy and the plexiform lesions in rats and humans with PH. OCS suppressed proliferation of PASMCs derived from the PH patients. Ethanol extracts of OCS inhibited TRPM7-like current, TGF-ß2-induced endothelial-mesenchymal transition, IL-6-induced STAT3 phosphorylation, and PDGF-induced Akt phosphorylation in PAECs or PASMCs. These inhibitory effects were recapitulated by either siRNA-mediated TRPM7 knockdown or treatment with TRPM7 antagonist FTY-720. OCS and FTY-720 induced vasorelaxation in the isolated normal human pulmonary artery. As a result, the present study proposes the therapeutic potential of OCS for the treatment of PH. The inhibition of TRPM7 is suggested to underlie the therapeutic effect of OCS.


Assuntos
Cordyceps/fisiologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/terapia , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Cloridrato de Fingolimode/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Hipertensão Pulmonar/patologia , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/fisiologia , Pesquisa Translacional Biomédica , Vasodilatação
11.
Proc Natl Acad Sci U S A ; 117(1): 214-220, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871178

RESUMO

Piezoelectric materials, a type of "smart" material that generates electricity while deforming and vice versa, have been used extensively for many important implantable medical devices such as sensors, transducers, and actuators. However, commonly utilized piezoelectric materials are either toxic or nondegradable. Thus, implanted devices employing these materials raise a significant concern in terms of safety issues and often require an invasive removal surgery, which can damage directly interfaced tissues/organs. Here, we present a strategy for materials processing, device assembly, and electronic integration to 1) create biodegradable and biocompatible piezoelectric PLLA [poly(l-lactic acid)] nanofibers with a highly controllable, efficient, and stable piezoelectric performance, and 2) demonstrate device applications of this nanomaterial, including a highly sensitive biodegradable pressure sensor for monitoring vital physiological pressures and a biodegradable ultrasonic transducer for blood-brain barrier opening that can be used to facilitate the delivery of drugs into the brain. These significant applications, which have not been achieved so far by conventional piezoelectric materials and bulk piezoelectric PLLA, demonstrate the PLLA nanofibers as a powerful material platform that offers a profound impact on various medical fields including drug delivery, tissue engineering, and implanted medical devices.


Assuntos
Implantes Absorvíveis , Sistemas Microeletromecânicos/instrumentação , Nanofibras/química , Transdutores , Sistemas de Liberação de Medicamentos , Eletricidade , Eletrônica , Desenho de Equipamento , Monitorização Fisiológica/instrumentação , Pressão , Próteses e Implantes , Engenharia Tecidual , Ultrassom
12.
World J Gastroenterol ; 24(35): 4036-4053, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30254408

RESUMO

AIM: To investigate the anti-fibrotic effects of the traditional oriental herbal medicine Daikenchuto (DKT) associated with transient receptor potential ankyrin 1 (TRPA1) channels in intestinal myofibroblasts. METHODS: Inflammatory and fibrotic changes were detected in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) chronic colitis model of wild-type and TRPA1-knockout (TRPA1-KO) mice via pathological staining and immunoblotting analysis. Ca2+ imaging experiments examined the effects of DKT and its components/ingredients on intestinal myofibroblast (InMyoFib) cell TRPA1 channel function. Pro-fibrotic factors and transforming growth factor (TGF)-ß1-associated signaling were tested in an InMyoFib cell line by qPCR and immunoblotting experiments. Samples from non-stenotic and stenotic regions of the intestines of patients with Crohn's disease (CD) were used for pathological analysis. RESULTS: Chronic treatment with TNBS caused more severe inflammation and fibrotic changes in TRPA1-KO than in wild-type mice. A one-week enema administration of DKT reduced fibrotic lesions in wild-type but not in TRPA1-KO mice. The active ingredients of DKT, i.e., hydroxy α-sanshool and 6-shogaol, induced Ca2+ influxes in InMyoFib, and this was antagonized by co-treatment with a selective TRPA1 channel blocker, HC-030031. DKT counteracted TGF-ß1-induced expression of Type I collagen and α-smooth muscle actin (α-SMA), which were accompanied by a reduction in the phosphorylation of Smad-2 and p38-mitogen-activated protein kinase (p38-MAPK) and the expression of myocardin. Importantly, 24-h incubation with a DKT active component Japanese Pepper increased the mRNA and protein expression levels of TRPA1 in InMyoFibs, which in turn negatively regulated collagen synthesis. In the stenotic regions of the intestines of CD patients, TRPA1 expression was significantly enhanced. CONCLUSION: The effects of DKT on the expression and activation of the TRPA1 channel could be advantageous for suppressing intestinal fibrosis, and benefit inflammatory bowel disease treatment.


Assuntos
Colite/tratamento farmacológico , Colo/patologia , Extratos Vegetais/farmacologia , Canal de Cátion TRPA1/metabolismo , Adulto , Animais , Linhagem Celular , Doença Crônica/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia , Colo/citologia , Colo/efeitos dos fármacos , Colo/cirurgia , Doença de Crohn/patologia , Doença de Crohn/cirurgia , Modelos Animais de Doenças , Fibrose , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Miofibroblastos/metabolismo , Panax , Extratos Vegetais/uso terapêutico , Canal de Cátion TRPA1/genética , Ácido Trinitrobenzenossulfônico/toxicidade , Zanthoxylum , Zingiberaceae
13.
DNA Cell Biol ; 37(4): 405-415, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29394098

RESUMO

microRNAs have been reported to play important roles in the pathogenesis of rheumatoid arthritis (RA). This study examined the effects of miR-522 on the biological behaviors of RA synovial fibroblasts. The expression levels of miR-522 and relevant genes were measured by quantitative real-time PCR. The protein levels of cytokines were determined by ELISA assay. The protein levels of matrix metalloproteinases (MMPs) and suppressor of cytokine signaling 3 (SOCS3) were determined by western blot assay. Luciferase reporter assay was used to confirm the potential target of miR-522. Our results showed that miR-522 was upregulated in synovial fibroblasts from RA patients, and miR-522 expression level was significantly associated with the RA-associated clinical parameters. miR-522 overexpression increased the mRNA and protein expression levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and MMPs (MMP-1, MMP-3, and MMP-13) in RA synovial fibroblasts. Lipopolysaccharide induced the upregulation of TNF-α, IL-1ß, and MMPs in RA synovial fibroblasts, which was reversed by miR-522 knockdown. Bioinformatics analysis identified SOCS3 as a potential target of miR-522, and this target of miR-522 was confirmed by luciferase reporter assay, and miR-522 overexpression suppressed the mRNA and protein expression levels of SOCS3. The enforced expression of SOCS3 attenuated the enhanced effects of miR-522 on mRNA expression levels of TNF-α, IL-1ß, and MMPs. Collectively, our results suggested that miR-522 regulated the expression of proinflammatory cytokines and MMPs partly via targeting SOCS3 in RA synovial fibroblasts, which may contribute to pathogenesis of RA.


Assuntos
Artrite Reumatoide/metabolismo , Metaloproteinases da Matriz/metabolismo , MicroRNAs/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Adulto , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Lipopolissacarídeos/farmacologia , Masculino , Metaloproteinases da Matriz/genética , MicroRNAs/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Líquido Sinovial/citologia , Líquido Sinovial/metabolismo , Fator de Necrose Tumoral alfa/genética
14.
Proc Natl Acad Sci U S A ; 115(5): 909-914, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339509

RESUMO

Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.


Assuntos
Implantes Absorvíveis , Monitorização Fisiológica/instrumentação , Pressão , Animais , Fenômenos Biomecânicos , Eletricidade , Humanos , Camundongos , Poliésteres
15.
Tumour Biol ; 37(2): 2547-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26386724

RESUMO

To investigate the immunogenicity of Homo sapiens putative translation initiation factor (Sui1) in hepatocellular carcinoma (HCC), enzyme-linked immunosorbent assay (ELISA) and Western blot were utilized to assess autoantibody responses to Sui1 in sera from HCC patients and healthy individuals. Indirect immunofluorescence (IIF) assay with cancer cells and immunohistochemistry (IHC) study with tissue array slides were performed to examine Sui1 expression profile in cancer cells and tissues. The data confirmed that the frequency of autoantibody to Sui1 in sera of HCC patients was 15.5 % (16/103), which was remarkably higher than that in sera of liver cirrhosis (LC) patients (3.3 %, 1/30), chronic hepatitis (CH) patients (0 %, 0/29), and normal human serum (NHS) (0 %, 0/82) (p < 0.01). IHC study showed that the Sui1 expression in HCC tissues was 26.7 % (16/60). The expression of Sui1 had the trend of increasing along with the cancer grades but no statistical significance (p > 0.05). In immunodiagnosis of HCC, the sensitivity and specificity of the anti-Sui1 antibody were 15.5 and 99.3 %, respectively. If both anti-Sui1 and alpha fetal protein (AFP) were simultaneously utilized as detective markers, 66.7 % (30/45) of HCC patients could be correctly distinguished. The results suggested that anti-Sui1 could be utilized as a supplementary serological marker for the detection of HCC and Sui1 might be associated to HCC carcinogenesis.


Assuntos
Autoanticorpos/imunologia , Carcinoma Hepatocelular/metabolismo , Fatores de Iniciação em Eucariotos/imunologia , Fatores de Iniciação em Eucariotos/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Adulto , Idoso , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo/métodos , Humanos , Imuno-Histoquímica/métodos , Testes Imunológicos/métodos , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
16.
Sci Rep ; 5: 16747, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26576490

RESUMO

Changes of intracellular and extracellular pH are involved in a variety of physiological and pathological processes, in which regulation of the Ca(2+) release activated Ca(2+) channel (I CRAC) by pH has been implicated. Ca(2+) entry mediated by I CRAC has been shown to be regulated by acidic or alkaline pH. Whereas several amino acid residues have been shown to contribute to extracellular pH (pHo) sensitivity, the molecular mechanism for intracellular pH (pHi) sensitivity of Orai1/STIM1 is not fully understood. By investigating a series of mutations, we find that the previously identified residue E106 is responsible for pHo sensitivity when Ca(2+) is the charge carrier. Unexpectedly, we identify that the residue E190 is responsible for pHo sensitivity when Na(+) is the charge carrier. Furthermore, the intracellular mutant H155F markedly diminishes the response to acidic and alkaline pHi, suggesting that H155 is responsible for pHi sensitivity of Orai1/STIM1. Our results indicate that, whereas H155 is the intracellular pH sensor of Orai1/STIM1, the molecular mechanism of external pH sensitivity varies depending on the permeant cations. As changes of pH are involved in various physiological/pathological functions, Orai/STIM channels may be an important mediator for various physiological and pathological processes associated with acidosis and alkalinization.


Assuntos
Motivos de Aminoácidos , Aminoácidos , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Espaço Extracelular/metabolismo , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Potenciais da Membrana , Proteínas de Membrana/genética , Mutação , Proteínas de Neoplasias/genética , Proteína ORAI1 , Prótons , Molécula 1 de Interação Estromal
17.
PLoS One ; 4(11): e7771, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19936226

RESUMO

BACKGROUND: TRPC6, encoding a member of the transient receptor potential (TRP) superfamily of ion channels, is a calcium-permeable cation channel, which mediates capacitive calcium entry into the cell. Until today, seven different mutations in TRPC6 have been identified as a cause of autosomal-dominant focal segmental glomerulosclerosis (FSGS) in adults. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel TRPC6 mutation that leads to early onset FSGS. We identified one family in whom disease segregated with a novel TRPC6 mutation (M132T), that also affected pediatric individuals as early as nine years of age. Twenty-one pedigrees compatible with an autosomal-dominant mode of inheritance and biopsy-proven FSGS were selected from a worldwide cohort of 550 families with steroid resistant nephrotic syndrome (SRNS). Whole cell current recordings of the mutant TRPC6 channel, compared to the wild-type channel, showed a 3 to 5-fold increase in the average out- and inward TRPC6 current amplitude. The mean inward calcium current of M132T was 10-fold larger than that of wild-type TRPC6. Interestingly, M132T mutants also lacked time-dependent inactivation. Generation of a novel double mutant M132T/N143S did not further augment TRPC6 channel activity. CONCLUSIONS: In summary, our data shows that TRPC6 mediated FSGS can also be found in children. The large increase in channel currents and impaired channel inactivation caused by the M132T mutant leads to an aggressive phenotype that underlines the importance of calcium dose channeled through TRPC6.


Assuntos
Regulação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/genética , Mutação , Canais de Cátion TRPC/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Saúde da Família , Feminino , Genes Dominantes , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Canal de Cátion TRPC6
18.
Proc Natl Acad Sci U S A ; 106(17): 7239-44, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19372375

RESUMO

Melastatin-related transient receptor potential channel 2 (TRPM2) is a Ca(2+)-permeable, nonselective cation channel that is involved in oxidative stress-induced cell death and inflammation processes. Although TRPM2 can be activated by ADP-ribose (ADPR) in vitro, it was unknown how TRPM2 is gated in vivo. Moreover, several alternative spliced isoforms of TRPM2 identified recently are insensitive to ADPR, and their gating mechanisms remain unclear. Here, we report that intracellular Ca(2+) ([Ca(2+)](i)) can activate TRPM2 as well as its spliced isoforms. We demonstrate that TRPM2 mutants with disrupted ADPR-binding sites can be activated readily by [Ca(2+)](i), indicating that [Ca(2+)](i) gating of TRPM2 is independent of ADPR. The mechanism by which [Ca(2+)](i) activates TRPM2 is via a calmodulin (CaM)-binding domain in the N terminus of TRPM2. Whereas Ca(2+)-mediated TRPM2 activation is independent of ADPR and ADPR-binding sites, both [Ca(2+)](i) and the CaM-binding motif are required for ADPR-mediated TRPM2 gating. Importantly, we demonstrate that intracellular Ca(2+) release activates both recombinant and endogenous TRPM2 in intact cells. Moreover, receptor activation-induced Ca(2+) release is capable of activating TRPM2. These results indicate that [Ca(2+)](i) is a key activator of TRPM2 and the only known activator of the spliced isoforms of TRPM2. Our findings suggest that [Ca(2+)](i)-mediated activation of TRPM2 and its alternative spliced isoforms may represent a major gating mechanism in vivo, therefore conferring important physiological and pathological functions of TRPM2 and its spliced isoforms in response to elevation of [Ca(2+)](i).


Assuntos
Processamento Alternativo/genética , Cálcio/metabolismo , Espaço Intracelular/metabolismo , Canais de Cátion TRPM/metabolismo , Adenosina Difosfato Ribose/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Calmodulina/metabolismo , Linhagem Celular , Fenômenos Eletrofisiológicos , Humanos , Dados de Sequência Molecular , Mutação/genética , Técnicas de Patch-Clamp , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética
19.
J Gen Physiol ; 126(2): 137-50, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16009728

RESUMO

TRPM7 is unique in being both an ion channel and a protein kinase. It conducts a large outward current at +100 mV but a small inward current at voltages ranging from -100 to -40 mV under physiological ionic conditions. Here we show that the small inward current of TRPM7 was dramatically enhanced by a decrease in extracellular pH, with an approximately 10-fold increase at pH 4.0 and 1-2-fold increase at pH 6.0. Several lines of evidence suggest that protons enhance TRPM7 inward currents by competing with Ca(2+) and Mg(2+) for binding sites, thereby releasing blockade of divalent cations on inward monovalent currents. First, extracellular protons significantly increased monovalent cation permeability. Second, higher proton concentrations were required to induce 50% of maximal increase in TRPM7 currents when the external Ca(2+) and Mg(2+) concentrations were increased. Third, the apparent affinity for Ca(2+) and Mg(2+) was significantly diminished at elevated external H(+) concentrations. Fourth, the anomalous-mole fraction behavior of H(+) permeation further suggests that protons compete with divalent cations for binding sites in the TRPM7 pore. Taken together, it appears that at physiological pH (7.4), Ca(2+) and Mg(2+) bind to TRPM7 and inhibit the monovalent cationic currents; whereas at high H(+) concentrations, the affinity of TRPM7 for Ca(2+) and Mg(2+) is decreased, thereby allowing monovalent cations to pass through TRPM7. Furthermore, we showed that the endogenous TRPM7-like current, which is known as Mg(2+)-inhibitable cation current (MIC) or Mg nucleotide-regulated metal ion current (MagNuM) in rat basophilic leukemia (RBL) cells was also significantly potentiated by acidic pH, suggesting that MIC/MagNuM is encoded by TRPM7. The pH sensitivity represents a novel feature of TRPM7 and implies that TRPM7 may play a role under acidic pathological conditions.


Assuntos
Prótons , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/farmacologia , Cátions Monovalentes , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Magnésio/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Técnicas de Patch-Clamp , Ratos , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA