Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(9): e0060424, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194241

RESUMO

Viruses normally reprogram the host cell metabolic pathways as well as metabolic sensors to facilitate their persistence. The serine-threonine liver kinase B1 (LKB1) is a master upstream kinase of 5'-AMP-activated protein kinase (AMPK) that senses the energy status and therefore regulates the intracellular metabolic homeostasis. Previous studies showed that AMPK restricts Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication in endothelial cells during primary infection and promotes primary effusion lymphoma (PEL) cell survival. However, the role of LKB1 in KSHV lytic reactivation and KSHV-associated malignancies is unclear. In this study, we found that LKB1 is phosphorylated or activated in KSHV-positive PEL cells. Mechanistically, KSHV-encoded vCyclin mediated LKB1 activation in PEL cells, as vCyclin knockout ablated, while vCyclin overexpression enhanced LKB1 activation. Furthermore, knockdown of LKB1 inactivated AMPK and induced KSHV reactivation, as indicated by the increased expression of viral lytic genes and the increased virions in supernatants. Accordingly, AMPK inhibition by functional knockdown or a pharmacologic inhibitor, Compound C, promoted KSHV reactivation in PEL cells. Furthermore, inhibition of either LKB1 or AMPKα1 efficiently induced cell death by apoptosis of PEL cells both in vitro and in vivo. Together, these results identify LKB1 as a vulnerable target for PEL, which could be potentially exploited for treating other virus-associated diseases.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with several human cancers, such as primary effusion lymphoma (PEL). Here, we showed that serine-threonine liver kinase B1 (LKB1), upstream of 5' AMP-activated protein kinase (AMPK), is activated by KSHV-encoded vCyclin and maintains KSHV latency in PEL cells. Inhibition of either LKB1 or AMPK enhances KSHV lytic replication from latency, which at least partially accounts for PEL cell death by apoptosis. Compound C, a potent AMPK inhibitor, induced KSHV reactivation and efficiently inhibited PEL progression in vivo. Thus, our work revealed that LKB1 is a potential therapeutic target for KSHV-associated cancers.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Herpesvirus Humano 8 , Linfoma de Efusão Primária , Proteínas Serina-Treonina Quinases , Ativação Viral , Herpesvirus Humano 8/fisiologia , Linfoma de Efusão Primária/virologia , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/patologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Camundongos , Linhagem Celular Tumoral , Apoptose , Replicação Viral , Latência Viral , Progressão da Doença , Fosforilação
2.
PLoS Pathog ; 19(8): e1011581, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37594999

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus consisting of both latent and lytic life cycles. Primary effusion lymphoma (PEL) is an aggressive B-cell lineage lymphoma, dominantly latently infected by KSHV. The latent infection of KSHV is persistent and poses an obstacle to killing tumor cells. Like the "shock and kill" strategy designed to eliminate latent HIV reservoir, methods that induce viral lytic reactivation in tumor latently infected by viruses represent a unique antineoplastic strategy, as it could potentially increase the specificity of cytotoxicity in cancer. Inspired by this conception, we proposed that the induction of KSHV lytic reactivation from latency could be a potential therapeutic stratagem for KSHV-associated cancers. Oxidative stress, the clinical hallmark of PEL, is one of the most prominent inducers for KSHV reactivation. Paradoxically, we found that hydrogen peroxide (H2O2) triggers robust cytotoxic effects on KSHV-negative rather than KSHV-positive B lymphoma cells in a dose-dependent manner. Mechanistically, we identified forkhead box protein O1 (FoxO1) and FoxO3 as irrevocable antioxidant defense genes and both of them are upregulated by KSHV latent infection, which is essential for the promoted ROS scavenging in KSHV-positive B lymphoma cells. Pharmacological inhibition or functional knockdown of either FoxO1 or FoxO3 is sufficient to ablate the antioxidant ability and therefore increases the intracellular ROS level that further reverses KSHV from latency to active lytic replication in PEL cells, resulting in tremendous cell death both in vitro and in vivo. Additionally, the elevated level of ROS by inhibiting FoxO proteins further sensitizes PEL cells to ROS-induced apoptosis. Our study therefore demonstrated that the lytic reactivation of KSHV by inhibiting FoxO proteins is a promising therapeutic approach for PEL, which could be further extended to other virus-associated diseases.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Herpesviridae , Herpesvirus Humano 8 , Linfoma de Efusão Primária , Humanos , Antioxidantes , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Latência Viral
3.
Cancer Res ; 82(17): 2964-2974, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35749594

RESUMO

The mTOR is a master regulator of cell growth that controls cell homeostasis in response to nutrients, growth factors, and other environmental cues. Recent studies have emphasized the importance of lysosomes as a hub for nutrient sensing, especially amino acid sensing by mTORC1. This review highlights recent advances in understanding the amino acid-mTORC1 signaling axis and the role of mTORC1 in cancer.


Assuntos
Aminoácidos , Lisossomos , Aminoácidos/metabolismo , Homeostase , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais/fisiologia
4.
Genet Test Mol Biomarkers ; 23(9): 601-609, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31386585

RESUMO

Background: Tetralogy of Fallot (TOF) accounts for ∼10% of congenital heart disease cases. The blood vessel epicardial substance (BVES) gene has been reported to play a role in the function of adult hearts. However, whether allelic variants in BVES contribute to the risk of TOF and its possible mechanism remains unknown. Methods: The open reading frame of the BVES gene was sequenced using samples from 146 TOF patients and 100 unrelated healthy controls. qRT-PCR and western blot assays were used to confirm the expression of mutated BVES variants in the TOF samples. The online software Polyphen2 and SIFT were used to predict the deleterious effects of the observed allelic variants. The effects of these allelic variants on the transcriptional activities of genes were examined using dual-fluorescence reporter assays. Results: We genotyped four single nucleotide polymorphisms (SNPs) in the BVES gene from each of the 146 TOF patients. Among them, the minor allelic frequencies of c.385C>T (p.R129W) were 0.035% in TOF, but ∼0.025% in 100 controls and the Chinese Millionome Database. This allelic variant was predicted to be a potentially harmful alteration by the Polyphen2 and SIFT softwares. qRT-PCR and western blot analyses indicated that the expression of BVES in the six right ventricular outflow tract samples with the c.385C>T allelic variant was significantly downregulated. A dual-fluorescence reporter system showed that the c.385C>T allelic variant significantly decreased the transcriptional activity of the BVES gene and also decreased transcription from the GATA4 and NKX2.5 promoters. Conclusions: c.385C>T (p.R129W) is a functional SNP of the BVES gene that reduces the transcriptional activity of BVES in vitro and in vivo in TOF tissues. This subsequently affects the transcriptional activities of GATA4 and NKX2.5 related to TOF. These findings suggest that c.385C>T may be associated with the risk of TOF in the Han Chinese population.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas Musculares/genética , Tetralogia de Fallot/genética , Alelos , Povo Asiático/genética , Moléculas de Adesão Celular/metabolismo , China/etnologia , Fator de Transcrição GATA4/metabolismo , Genótipo , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Proteínas Musculares/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA