Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896238

RESUMO

Immune checkpoint inhibitor (ICI) therapy has revolutionized cancer treatment by leveraging the body's immune system to combat cancer cells. However, its effectiveness in brain cancer is hindered by the blood-brain barrier (BBB), impeding the delivery of ICIs to brain tumor cells. This study aimed to assess the safety and feasibility of using focused ultrasound combined with microbubble-mediated BBB opening (FUS-BBBO) to facilitate trans-BBB delivery of an ICI, anti-programmed cell death-ligand 1 antibody (aPD-L1) to the brain of a large animal model. In a porcine model, FUS sonication of targeted brain regions was performed after intravenous microbubble injection, which was followed by intravenous administration of aPD-L1 labeled with a near-infrared fluorescent dye. The permeability of the BBB was evaluated using contrast-enhanced MRI in vivo, while fluorescence imaging and histological analysis were conducted on ex vivo pig brains. Results showed a significant 4.8-fold increase in MRI contrast-enhancement volume in FUS-targeted regions compared to nontargeted regions. FUS sonication enhanced aPD-L1 delivery by an average of 2.1-fold, according to fluorescence imaging. In vivo MRI and ex vivo staining revealed that the procedure did not cause significant acute tissue damage. These findings demonstrate that FUS-BBBO offers a noninvasive, localized, and safe delivery approach for ICI delivery in a large animal model, showcasing its potential for clinical translation.

2.
NPJ Precis Oncol ; 7(1): 92, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717084

RESUMO

Sonobiopsy is an emerging technology that combines focused ultrasound (FUS) with microbubbles to enrich circulating brain disease-specific biomarkers for noninvasive molecular diagnosis of brain diseases. Here, we report the first-in-human prospective trial of sonobiopsy in high-grade glioma patients to evaluate its feasibility and safety in enriching plasma circulating tumor biomarkers. A nimble FUS device integrated with a clinical neuronavigation system was used to perform sonobiopsy following an established clinical workflow for neuronavigation. Analysis of blood samples collected before and after FUS sonication showed that sonobiopsy enriched plasma circulating tumor DNA (ctDNA), including a maximum increase of 1.6-fold for the mononucleosome cell-free DNA (cfDNA) fragments (120-280 bp), 1.9-fold for the patient-specific tumor variant ctDNA level, and 5.6-fold for the TERT mutation ctDNA level. Histological analysis of surgically resected tumors confirmed the safety of the procedure. Transcriptome analysis of sonicated and nonsonicated tumor tissues found that FUS sonication modulated cell physical structure-related genes. Only 2 out of 17,982 total detected genes related to the immune pathways were upregulated. These feasibility and safety data support the continued investigation of sonobiopsy for noninvasive molecular diagnosis of brain diseases.

3.
medRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993173

RESUMO

Sonobiopsy is an emerging technology that combines focused ultrasound (FUS) with microbubbles to enrich circulating brain disease-specific biomarkers for noninvasive molecular diagnosis of brain diseases. Here, we report the first-in-human prospective trial of sonobiopsy in glioblastoma patients to evaluate its feasibility and safety in enriching circulating tumor biomarkers. A nimble FUS device integrated with a clinical neuronavigation system was used to perform sonobiopsy following an established clinical workflow for neuronavigation. Analysis of blood samples collected before and after FUS sonication showed enhanced plasma circulating tumor biomarker levels. Histological analysis of surgically resected tumors confirmed the safety of the procedure. Transcriptome analysis of sonicated and unsonicated tumor tissues found that FUS sonication modulated cell physical structure-related genes but evoked minimal inflammatory response. These feasibility and safety data support the continued investigation of sonobiopsy for noninvasive molecular diagnosis of brain diseases.

4.
J Neural Eng ; 20(1)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36780694

RESUMO

Background.Noninvasive and cell-type-specific neuromodulation tools are critically needed for probing intact brain function. Sonogenetics for noninvasive activation of neurons engineered to express thermosensitive transient receptor potential vanilloid 1 (TRPV1) by transcranial focused ultrasound (FUS) was recently developed to address this need. However, using TRPV1-mediated sonogenetics to evoke behavior by targeting the cortex is challenged by its proximity to the skull due to high skull absorption of ultrasound and increased risks of thermal-induced tissue damage.Objective.This study evaluated the feasibility and safety of TRPV1-mediated sonogenetics in targeting the motor cortex to modulate the locomotor behavior of freely moving mice.Approach.Adeno-associated viral vectors was delivered to the mouse motor cortex via intracranial injection to express TRPV1 in excitatory neurons. A wearable FUS device was installed on the mouse head after a month to control neuronal activity by activating virally expressed TRPV1 through FUS sonication at different acoustic pressures. Immunohistochemistry staining ofex vivobrain slices was performed to verify neuron activation and evaluate safety.Results.TRPV1-mediated sonogenetic stimulation at 0.7 MPa successfully evoked rotational behavior in the direction contralateral to the stimulation site, activated cortical neurons as indicated by the upregulation of c-Fos, and did not induce significant changes in inflammatory or apoptotic markers (GFAP, Iba1, and Caspase-3). Sonogenetic stimulation of TRPV1 mice at a higher acoustic pressure, 1.1 MPa, induced significant changes in motor behavior and upregulation of c-Fos compared with FUS sonication of naïve mice at 1.1 MPa. However, signs of damage at the meninges were observed at 1.1 MPa.Significance.TRPV1-mediated sonogenetics can achieve effective and safe neuromodulation at the cortex with carefully selected FUS parameters. These findings expand the application of this technique to include superficial brain targets.


Assuntos
Córtex Motor , Canais de Cátion TRPV , Animais , Camundongos , Encéfalo/fisiologia , Cabeça , Córtex Motor/fisiologia , Neurônios , Crânio , Canais de Cátion TRPV/genética , Vetores Genéticos
5.
Radiology ; 307(2): e220869, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36719290

RESUMO

Background Neurodegenerative disorders (such as Alzheimer disease) characterized by the deposition of various pathogenic forms of tau protein in the brain are collectively referred to as tauopathies. Identification of the molecular drivers and pathways of neurodegeneration is critical to individualized targeted treatment of these disorders. However, despite important advances in fluid biomarker detection, characterization of these molecular subtypes is limited by the blood-brain barrier. Purpose To evaluate the feasibility and safety of focused ultrasound-mediated liquid biopsy (sonobiopsy) in the detection of brain-derived protein biomarkers in a transgenic mouse model of tauopathy (PS19 mice). Materials and Methods Sonobiopsy was performed by sonicating the cerebral hemisphere in 2-month-old PS19 and wild-type mice, followed by measurement of plasma phosphorylated tau (p-tau) species (30 minutes after sonication in the sonobiopsy group). Next, spatially targeted sonobiopsy was performed by sonicating either the cerebral cortex or the hippocampus in 6-month-old PS19 mice. To detect changes in plasma neurofilament light chain (a biomarker of neurodegeneration) levels, blood samples were collected before and after sonication (15 and 45-60 minutes after sonication). Histologic staining was performed to evaluate tissue damage after sonobiopsy. The Shapiro-Wilk test, unpaired and paired t tests, and the Mann-Whitney U test were used. Results In the 2-month-old mice, sonobiopsy significantly increased the normalized levels of plasma p-tau species compared with the conventional blood-based liquid biopsy (p-tau-181-to-mouse tau [m-tau] ratio: 1.7-fold increase, P = .006; p-tau-231-to-m-tau ratio: 1.4-fold increase, P = .048). In the 6-month-old PS19 mice, spatially targeted sonobiopsy resulted in a 2.3-fold increase in plasma neurofilament light chain after sonication of the hippocampus and cerebral cortex (P < .001). After optimization of the sonobiopsy parameters, no excess microhemorrhage was observed in the treated cerebral hemisphere compared with the contralateral side. Conclusion This study showed the feasibility of sonobiopsy to release phosphorylated tau species and neurofilament light chain to the blood circulation, potentially facilitating diagnosis of neurodegenerative disorders. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Fowlkes in this issue.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Tauopatias , Camundongos , Animais , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Biomarcadores
6.
EBioMedicine ; 84: 104277, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36152518

RESUMO

BACKGROUND: Adeno-associated viral (AAV) vectors are currently the leading platform for gene therapy with the potential to treat a variety of central nervous system (CNS) diseases. There are numerous methods for delivering AAVs to the CNS, such as direct intracranial injection (DI), intranasal delivery (IN), and intravenous injection with focused ultrasound-induced blood-brain barrier disruption (FUS-BBBD). However, non-invasive and efficient delivery of AAVs to the brain with minimal systemic toxicity remain the major challenge. This study aims to investigate the potential of focused ultrasound-mediated intranasal delivery (FUSIN) in AAV delivery to brain. METHODS: Mice were intranasally administered with AAV5 encoding enhanced green fluorescence protein (AAV5-EGFP) followed by FUS sonication in the presence of systemically injected microbubbles. Mouse brains and other major organs were harvested for immunohistological staining, PCR quantification, and in situ hybridization. The AAV delivery outcomes were compared with those of DI, FUS-BBBD, and IN delivery. FINDINGS: FUSIN achieved safe and efficient delivery of AAV5-EGFP to spatially targeted brain locations, including a superficial brain site (cortex) and a deep brain region (brainstem). FUSIN achieved comparable delivery outcomes as the established DI, and displayed 414.9-fold and 2073.7-fold higher delivery efficiency than FUS-BBBD and IN. FUSIN was associated with minimal biodistribution in peripheral organs, which was comparable to that of DI. INTERPRETATION: Our results suggest that FUSIN is a promising technique for non-invasive, efficient, safe, and spatially targeted AAV delivery to the brain. FUNDING: National Institutes of Health (NIH) grants R01EB027223, R01EB030102, R01MH116981, and UG3MH126861.


Assuntos
Barreira Hematoencefálica , Receptores CXCR4 , Administração Intranasal , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Camundongos , Receptores CXCR4/metabolismo , Distribuição Tecidual , Estados Unidos
7.
Neurooncol Adv ; 4(1): vdac059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733516

RESUMO

Background: Leptomeningeal disease and hydrocephalus are present in up to 30% of patients with diffuse intrinsic pontine glioma (DIPG), however there are no animal models of cerebrospinal fluid (CSF) dissemination. As the tumor-CSF-ependymal microenvironment may play an important role in tumor pathogenesis, we identified characteristics of the Nestin-tumor virus A (Nestin-Tva) genetically engineered mouse model that make it ideal to study the interaction of tumor cells with the CSF and its associated pathways with implications for the development of treatment approaches to address CSF dissemination in DIPG. Methods: A Nestin-Tva model of DIPG utilizing the 3 most common DIPG genetic alterations (H3.3K27M, PDGF-B, and p53) was used for this study. All mice underwent MR imaging and a subset underwent histopathologic analysis with H&E and immunostaining. Results: Tumor dissemination within the CSF pathways (ventricles, leptomeninges) from the subependyma was present in 76% (25/33) of mice, with invasion of the choroid plexus, disruption of the ciliated ependyma and regional subependymal fluid accumulation. Ventricular enlargement consistent with hydrocephalus was present in 94% (31/33). Ventricle volume correlated with region-specific transependymal CSF flow (periventricular T2 signal), localized anterior to the lateral ventricles. Conclusions: This is the first study to report CSF pathway tumor dissemination associated with subependymal tumor in an animal model of DIPG and is representative of CSF dissemination seen clinically. Understanding the CSF-tumor-ependymal microenvironment has significant implications for treatment of DIPG through targeting mechanisms of tumor spread within the CSF pathways.

8.
IEEE Trans Biomed Eng ; 69(11): 3449-3459, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35476579

RESUMO

OBJECTIVE: Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest brainstem tumor in children. Focused ultrasound combined with microbubble-mediated BBB opening (FUS-BBBO) is a promising technique for overcoming the frequently intact blood-brain barrier (BBB) in DIPG to enhance therapeutic drug delivery to the brainstem. Since DIPG is highly diffusive, large-volume FUS-BBBO is needed to cover the entire tumor region. The objective of this study was to determine the optimal treatment strategy to achieve efficient and homogeneous large-volume BBBO at the brainstem for the delivery of an immune checkpoint inhibitor, anti-PD-L1 antibody (aPD-L1). METHODS: Two critical parameters for large-volume FUS-BBBO, multi-point sonication pattern (interleaved vs. serial) and microbubble injection method (bolus vs. infusion), were evaluated by treating mice with four combinations of these two parameters. 2D Passive cavitation imaging (PCI) was performed for monitoring the large-volume sonication. RESULTS: Interleaved sonication combined with bolus injection of microbubbles resulted in 1.29 to 2.06 folds higher efficiency than other strategies as evaluated by Evans blue extravasation. The average coefficient of variation of the Evans blue delivery was 0.66 for interleaved sonication with bolus injection, compared to 0.68-0.88 for all other strategies. Similar trend was also observed in the quantified total cavitation dose and coefficient of variance of the cavitation dose. This strategy was then applied to deliver fluorescently labeled aPD-L1 which was quantified using fluorescence imaging. A strong segmented linear correlation (R2 = 0.81) was found between the total cavitation dose and the total fluorescence intensity of aPD-L1 delivered at different sonication pressures (0.15 MPa, 0.30 MPa, and 0.45 MPa). SIGNIFICANCE: Findings from this study suggest that efficient and homogeneous large-volume FUS-BBBO can be achieved by interleaved sonication combined with bolus injection of microbubbles, and the efficiency and homogeneity can be monitored by PCI.


Assuntos
Microbolhas , Sonicação , Animais , Camundongos , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos/métodos , Azul Evans , Inibidores de Checkpoint Imunológico , Sonicação/métodos
9.
Theranostics ; 12(1): 362-378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987650

RESUMO

Though surgical biopsies provide direct access to tissue for genomic characterization of brain cancer, they are invasive and pose significant clinical risks. Brain cancer management via blood-based liquid biopsies is a minimally invasive alternative; however, the blood-brain barrier (BBB) restricts the release of brain tumor-derived molecular biomarkers necessary for sensitive diagnosis. Methods: A mouse glioblastoma multiforme (GBM) model was used to demonstrate the capability of focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) to improve the diagnostic sensitivity of brain tumor-specific genetic mutations compared with conventional blood-based liquid biopsy. Furthermore, a pig GBM model was developed to characterize the translational implications of sonobiopsy in humans. Magnetic resonance imaging (MRI)-guided FUS sonication was performed in mice and pigs to locally enhance the BBB permeability of the GBM tumor. Contrast-enhanced T1-weighted MR images were acquired to evaluate the BBB permeability change. Blood was collected immediately after FUS sonication. Droplet digital PCR was used to quantify the levels of brain tumor-specific genetic mutations in the circulating tumor DNA (ctDNA). Histological staining was performed to evaluate the potential for off-target tissue damage by sonobiopsy. Results: Sonobiopsy improved the detection sensitivity of EGFRvIII from 7.14% to 64.71% and TERT C228T from 14.29% to 45.83% in the mouse GBM model. It also improved the diagnostic sensitivity of EGFRvIII from 28.57% to 100% and TERT C228T from 42.86% to 71.43% in the porcine GBM model. Conclusion: Sonobiopsy disrupts the BBB at the spatially-targeted brain location, releases tumor-derived DNA into the blood circulation, and enables timely collection of ctDNA. Converging evidence from both mouse and pig GBM models strongly supports the clinical translation of sonobiopsy for the minimally invasive, spatiotemporally-controlled, and sensitive molecular characterization of brain cancer.


Assuntos
Neoplasias Encefálicas , DNA Tumoral Circulante/metabolismo , Glioblastoma , Biópsia Líquida/métodos , Sonicação/métodos , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Suínos
10.
Pharmaceutics ; 13(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535531

RESUMO

Immune checkpoint inhibitors have great potential for the treatment of gliomas; however, their therapeutic efficacy has been partially limited by their inability to efficiently cross the blood-brain barrier (BBB). The objective of this study was to evaluate the capability of focused-ultrasound-mediated intranasal brain drug delivery (FUSIN) in achieving the locally enhanced delivery of anti-programmed cell death-ligand 1 antibody (aPD-L1) to the brain. Both non-tumor mice and mice transcranially implanted with GL261 glioma cells at the brainstem were used in this study. aPD-L1 was labeled with a near-infrared fluorescence dye (IRDye 800CW) and administered to mice through the nasal route to the brain, followed by focused ultrasound sonication in the presence of systemically injected microbubbles. FUSIN enhanced the accumulation of aPD-L1 at the FUS-targeted brainstem by an average of 4.03- and 3.74-fold compared with intranasal (IN) administration alone in the non-tumor mice and glioma mice, respectively. Immunohistochemistry staining found that aPD-L1 was mainly located within the perivascular spaces after IN delivery, while FUSIN further enhanced the penetration depth and delivery efficiency of aPD-L1 to the brain parenchyma. The delivered aPD-L1 was found to be colocalized with the tumor cells after FUSIN delivery to the brainstem glioma. These findings suggest that FUSIN is a promising technique to enhance the delivery of immune checkpoint inhibitors to gliomas.

11.
PLoS One ; 15(6): e0234182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492056

RESUMO

The development of noninvasive approaches for brain tumor diagnosis and monitoring continues to be a major medical challenge. Although blood-based liquid biopsy has received considerable attention in various cancers, limited progress has been made for brain tumors, at least partly due to the hindrance of tumor biomarker release into the peripheral circulation by the blood-brain barrier. Focused ultrasound (FUS) combined with microbubbles induced BBB disruption has been established as a promising technique for noninvasive and localized brain drug delivery. Building on this established technique, we propose to develop FUS-enabled liquid biopsy technique (FUS-LBx) to enhance the release of brain tumor biomarkers (e.g., DNA, RNA, and proteins) into the circulation. The objective of this study was to demonstrate that FUS-LBx could sufficiently increase plasma levels of brain tumor biomarkers without causing hemorrhage in the brain. Mice with orthotopic implantation of enhanced green fluorescent protein (eGFP)-transfected murine glioma cells were treated using magnetic resonance (MR)-guided FUS system in the presence of systemically injected microbubbles at three peak negative pressure levels (0.59, 1.29, and 1.58 MPa). Plasma eGFP mRNA levels were quantified with the quantitative polymerase chain reaction (qPCR). Contrast-enhanced MR images were acquired before and after the FUS sonication. FUS at 0.59 MPa resulted in an increased plasma eGFP mRNA level, comparable to those at higher acoustic pressures (1.29 MPa and 1.58 MPa). Microhemorrhage density associated with FUS at 0.59 MPa was significantly lower than that at higher acoustic pressures and not significantly different from the control group. MRI analysis revealed that post-sonication intratumoral and peritumoral hyperenhancement had strong correlations with the level of FUS-induced biomarker release and the extent of hemorrhage. This study suggests that FUS-LBx could be a safe and effective brain-tumor biomarker release technique, and MRI could be used to develop image-guided FUS-LBx.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Ultrassonografia de Intervenção/métodos , Animais , Biomarcadores Tumorais/sangue , Barreira Hematoencefálica , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Meios de Contraste , Feminino , Glioblastoma/diagnóstico por imagem , Proteínas de Fluorescência Verde/sangue , Proteínas de Fluorescência Verde/genética , Hemorragias Intracranianas/etiologia , Hemorragias Intracranianas/patologia , Biópsia Líquida/métodos , Imageamento por Ressonância Magnética , Camundongos , Ultrassonografia de Intervenção/efeitos adversos
12.
Sci Rep ; 10(1): 7449, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366915

RESUMO

Although blood-based liquid biopsy is a promising noninvasive technique to acquire a comprehensive molecular tumor profile by detecting cancer-specific biomarkers (e.g. DNA, RNA, and proteins), there has been limited progress for brain tumor application partially because the low permeability of the blood-brain barrier (BBB) hinders the release of tumor biomarkers. We previously demonstrated focused ultrasound-enabled liquid biopsy (FUS-LBx) that uses FUS to increase BBB permeability in murine glioblastoma models and thus enhance the release of tumor-specific biomarkers into the bloodstream. The objective of this study was to evaluate the feasibility and safety of FUS-LBx in the normal brain tissue of a porcine model. Increased BBB permeability was confirmed by the significant increase (p = 0.0053) in Ktrans (the transfer coefficient from blood to brain extravascular extracellular space) when comparing the FUS-sonicated brain area with the contralateral non-sonicated area. Meanwhile, there was a significant increase in the blood concentrations of glial fibrillary acidic protein (GFAP, p = 0.0074) and myelin basic protein (MBP, p = 0.0039) after FUS sonication as compared with before FUS. There was no detectable tissue damage by T2*-weighted MRI and histological analysis. Findings from this study suggest that FUS-LBx is a promising technique for noninvasive and localized diagnosis of the molecular profiles of brain diseases with the potential to translate to the clinic.


Assuntos
Barreira Hematoencefálica , Encéfalo/metabolismo , Encéfalo/patologia , Biópsia Líquida/métodos , Ultrassonografia/métodos , Animais , Biomarcadores/metabolismo , Ensaio de Imunoadsorção Enzimática , Estudos de Viabilidade , Proteína Glial Fibrilar Ácida/metabolismo , Glioblastoma/metabolismo , Imageamento por Ressonância Magnética , Masculino , Segurança do Paciente , Permeabilidade , Suínos
13.
ACS Appl Nano Mater ; 3(11): 11129-11134, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34337344

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an invasive pediatric brainstem malignancy exclusively in children without effective treatment due to the often-intact blood-brain tumor barrier (BBTB), an impediment to the delivery of therapeutics. Herein, we used focused ultrasound (FUS) to transiently open BBTB and delivered radiolabeled nanoclusters (64Cu-CuNCs) to tumors for positron emission tomography (PET) imaging and quantification in a mouse DIPG model. First, we optimized FUS acoustic pressure to open the blood-brain barrier (BBB) for effective delivery of 64Cu-CuNCs to pons in wildtype mice. Then the optimized FUS pressure was used to deliver radiolabeled agents in DIPG mouse. Magnetic resonance imaging (MRI)-guided FUS-induced BBTB opening was demonstrated using a low molecular weight, short-lived 68Ga-DOTA-ECL1i radiotracer and PET/CT before and after treatment. We then compared the delivery efficiency of 64Cu-CuNCs to DIPG tumor with and without FUS treatment and demonstrated the FUS-enhanced delivery and time-dependent diffusion of 64Cu-CuNCs within the tumor.

14.
Small ; 14(30): e1703115, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29966035

RESUMO

Focused ultrasound (FUS) technology is reported to enhance the delivery of 64 Cu-integrated ultrasmall gold nanoclusters (64 Cu-AuNCs) across the blood-brain barrier (BBB) as measured by positron emission tomography (PET). To better define the optimal physical properties for brain delivery, 64 Cu-AuNCs with different surface charges are synthesized and characterized. In vivo biodistribution studies are performed to compare the individual organ uptake of each type of 64 Cu-AuNCs. Quantitative PET imaging post-FUS treatment shows site-targeted brain penetration, retention, and diffusion of the negative, neutral, and positive 64 Cu-AuNCs. Autoradiography is performed to compare the intrabrain distribution of these nanoclusters. PET Imaging demonstrates the effective BBB opening and successful delivery of 64 Cu-AuNCs into the brain. Of the three 64 Cu-AuNCs investigated, the neutrally charged nanostructure performs the best and is the candidate platform for future theranostic applications in neuro-oncology.


Assuntos
Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Tomografia por Emissão de Pósitrons , Ultrassom/métodos , Animais , Nanopartículas Metálicas/ultraestrutura , Camundongos , Polietilenoglicóis/química , Propriedades de Superfície , Ácido Tióctico/química , Distribuição Tecidual
15.
J Control Release ; 283: 143-150, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29864474

RESUMO

The goal of this study was to establish the feasibility of integrating focused ultrasound (FUS)-mediated delivery of 64Cu-integrated gold nanoclusters (64Cu-AuNCs) to the pons for in vivo quantification of the nanocluster brain uptake using positron emission tomography (PET) imaging. FUS was targeted at the pons for the blood-brain barrier (BBB) disruption in the presence of systemically injected microbubbles, followed by the intravenous injection of 64Cu-AuNCs. The spatiotemporal distribution of the 64Cu-AuNCs in the brain was quantified using in vivo microPET/CT imaging at different time points post injection. Following PET imaging, the accumulation of radioactivity in the pons was further confirmed using autoradiography and gamma counting, and the gold concentration was quantified using inductively coupled plasma-mass spectrometry (ICP-MS). We found that the noninvasive and localized BBB opening by the FUS successfully delivered the 64Cu-AuNCs to the pons. We also demonstrated that in vivo real-time microPET/CT imaging was a reliable method for monitoring and quantifying the brain uptake of 64Cu-AuNCs delivered by the FUS. This drug delivery platform that integrates FUS, radiolabeled nanoclusters, and PET imaging provides a new strategy for noninvasive and localized nanoparticle delivery to the pons with concurrent in vivo quantitative imaging to evaluate delivery efficiency. The long-term goal is to apply this drug delivery platform to the treatment of pontine gliomas.


Assuntos
Encéfalo/metabolismo , Radioisótopos de Cobre/administração & dosagem , Ouro/administração & dosagem , Nanoestruturas/administração & dosagem , Ondas Ultrassônicas , Animais , Encéfalo/diagnóstico por imagem , Radioisótopos de Cobre/farmacocinética , Ouro/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Microbolhas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
16.
Sci Rep ; 8(1): 6553, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700310

RESUMO

Although blood-based liquid biopsies have emerged as a promising non-invasive method to detect biomarkers in various cancers, limited progress has been made for brain tumors. One major obstacle is the blood-brain barrier (BBB), which hinders efficient passage of tumor biomarkers into the peripheral circulation. The objective of this study was to determine whether FUS in combination with microbubbles can enhance the release of biomarkers from the brain tumor to the blood circulation. Two glioblastoma tumor models (U87 and GL261), developed by intracranial injection of respective enhanced green fluorescent protein (eGFP)-transduced glioblastoma cells, were treated by FUS in the presence of systemically injected microbubbles. Effect of FUS on plasma eGFP mRNA levels was determined using quantitative polymerase chain reaction. eGFP mRNA were only detectable in the FUS-treated U87 mice and undetectable in the untreated U87 mice (maximum cycle number set to 40). This finding was replicated in GL261 mice across three different acoustic pressures. The circulating levels of eGFP mRNA were 1,500-4,800 fold higher in the FUS-treated GL261 mice than that of the untreated mice for the three acoustic pressures. This study demonstrated the feasibility of FUS-enabled brain tumor liquid biopsies in two different murine glioma models across different acoustic pressures.


Assuntos
Neoplasias Encefálicas/diagnóstico , Biópsia Guiada por Imagem , Biópsia Líquida , Ultrassonografia , Animais , Biomarcadores Tumorais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Glioblastoma/diagnóstico , Xenoenxertos , Biópsia Guiada por Imagem/métodos , Imuno-Histoquímica , Biópsia Líquida/métodos , Camundongos , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA