Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 202(1): 319-331, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37020163

RESUMO

Perfluoro octane sulfonate (PFOS) and cadmium (Cd) are toxic elements in the environment. As a micronutrient trace element, selenium (Se) can mitigate the adverse effects induced by PFOS and Cd. However, few studies have examined the correlation between Se, PFOS and Cd in fish. The present study focused on the antagonistic effects of Se on PFOS+Cd-induced accumulation in the liver of zebrafish. The fish was exposed to PFOS (0.08mg/L), Cd (1mg/L), PFOS+ Cd (0.08 mg/L PFOS+1 mg/L Cd), L-Se (0.07mg/L Sodium selenite +0.08mg/L PFOS+1mg/L Cd), M-Se (0.35mg/L Sodium selenite + 0.08mg/L PFOS+ 1 mg/L Cd), H-Se (1.75 mg/L Sodium selenite + 0.08 mg/L PFOS+ 1mg/L Cd) for 14d. The addition of selenium to fish exposed to PFOS and Cd has been found to have significant positive effects. Specifically, selenium treatments can alleviate the adverse effects of PFOS and Cd on fish growth, with a 23.10% improvement observed with the addition of T6 compared to T4. In addition, selenium can alleviate the negative effects of PFOS and Cd on antioxidant enzymes in zebrafish liver, thus reducing the liver toxicity caused by PFOS and Cd. Overall, the supplementation of selenium can reduce the health risks to fish and mitigate the injuries caused by PFOS and Cd in zebrafish.


Assuntos
Selênio , Oligoelementos , Animais , Peixe-Zebra , Selênio/farmacologia , Cádmio/toxicidade , Selenito de Sódio/farmacologia , Octanos
2.
Mar Pollut Bull ; 174: 113278, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34995886

RESUMO

Human activities have changed the global concentration of potentially toxic elements (PTEs) and significantly altered the marine ecosystem. Little is known about the concentrations of these PTEs around Hainan Island in China, or their distribution and human health risks. Understanding the variability of PTEs in marine sediments and how they accumulate is important not only for biodiversity and ecological conservation, but also for management of aquatic natural resources and human health risk assessments. This study showed that the concentrations of six PTEs (Cd, Cu, Zn, As, Pb, and Hg), sampled in nine different cities, were linked to human activities. In order to understand the ecological risks associated with PTE pollution, we calculated the contamination factor (CF), enrichment factor (EF), pollution load index (PLI), and geo-accumulation index (Igeo) of each element in each city. These indicators suggest that the pollution of Cd and Zn in the sediments of these cities is higher than that of the other PTEs. We also carried out a human health risk assessment which demonstrated the carcinogenic effects of Zn on children and adults in ChengMai, while Pb showed non-carcinogenic effects at all the studied sites, suggesting that Zn pollution in the sediments of ChengMai may pose human health risks. We would therefore advise that follow-up studies endeavor to monitor the levels of PTEs in the flora and fauna of these cities.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , China , Ecossistema , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA