Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Circ Res ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39234670

RESUMO

BACKGROUND: Hypertension incidence increases with age and represents one of the most prevalent risk factors for cardiovascular disease. Clonal events in the hematopoietic system resulting from somatic mutations in driver genes are prevalent in elderly individuals who lack overt hematologic disorders. This condition is referred to as age-related clonal hematopoiesis (CH), and it is a newly recognized risk factor for cardiovascular disease. It is not known whether CH and hypertension in the elderly are causally related and, if so, what are the mechanistic features. METHODS AND RESULTS: A murine model of adoptive bone marrow transplantation was employed to examine the interplay between Tet2 (ten-eleven translocation methylcytosine dioxygenase 2) CH and hypertension. In this model, a subpressor dose of Ang II (angiotensin II) resulted in elevated systolic and diastolic blood pressure as early as 1 day after the challenge. These conditions led to the expansion of Tet2-deficient proinflammatory monocytes and bone marrow progenitor populations. Tet2-deficiency promoted renal CCL5 chemokine expression and macrophage infiltration into the kidney. Consistent with macrophage involvement, Tet2-deficiency in myeloid cells promoted hypertension when mice were treated with a subpressor dose of Ang II. The hematopoietic Tet2-/- condition led to sodium retention, renal inflammasome activation, and elevated levels of IL (interleukin)-1ß and IL-18. Analysis of the sodium transporters indicated NCC (Na+-Cl- cotransporter) and NKCC2 activation at residues Thr53 and Ser105, respectively. Administration of the NLRP3 inflammasome inhibitor MCC950 reversed the hypertensive state, sodium retention, and renal transporter activation. CONCLUSIONS: Tet2-mediated CH sensitizes mice to a hypertensive stimulus. Mechanistically, the expansion of hematopoietic Tet2-deficient cells promotes hypertension due to elevated renal immune cell infiltration and activation of the NLRP3 inflammasome, with consequences on sodium retention. These data indicate that carriers of TET2 CH could be at elevated risk for the development of hypertension and that immune modulators could be useful in treating hypertension in this patient population.

2.
Nat Cardiovasc Res ; 3(3): 343-355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39183958

RESUMO

Heart failure affects millions of people worldwide, with men exhibiting a higher incidence than women. Our previous work has shown that mosaic loss of the Y chromosome (LOY) in leukocytes is causally associated with an increased risk for heart failure. Here, we show that LOY macrophages from the failing hearts of humans with dilated cardiomyopathy exhibit widespread changes in gene expression that correlate with cardiac fibroblast activation. Moreover, we identify the ubiquitously transcribed t et ratricopeptide Y-linked (Uty) gene in leukocytes as a causal locus for an accelerated progression of heart failure in male mice with LOY. We demonstrate that Uty disruption leads to epigenetic alterations in both monocytes and macrophages, increasing the propensity of differentiation into profibrotic macrophages. Treatment with a transforming growth factor-ß-neutralizing antibody prevented the cardiac pathology associated with Uty deficiency in leukocytes. These findings shed light on the mechanisms that contribute to the higher incidence of heart failure in men.


Assuntos
Cromossomos Humanos Y , Epigênese Genética , Insuficiência Cardíaca , Animais , Masculino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Cromossomos Humanos Y/genética , Fibrose/genética , Fibrose/patologia , Macrófagos/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Camundongos , Feminino , Fenótipo , Camundongos Endogâmicos C57BL , Células Cultivadas , Camundongos Knockout
3.
Heart Fail Rev ; 29(5): 1049-1063, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38985383

RESUMO

Improvements in therapies for heart failure with preserved ejection fraction (HFpEF) are crucial for improving patient outcomes and quality of life. Although HFpEF is the predominant heart failure type among older individuals, its prognosis is often poor owing to the lack of effective therapies. The roles of the spleen and bone marrow are often overlooked in the context of HFpEF. Recent studies suggest that the spleen and bone marrow could play key roles in HFpEF, especially in relation to inflammation and immune responses. The bone marrow can increase production of certain immune cells that can migrate to the heart and contribute to disease. The spleen can contribute to immune responses that either protect or exacerbate heart failure. Extramedullary hematopoiesis in the spleen could play a crucial role in HFpEF. Increased metabolic activity in the spleen, immune cell production and mobilization to the heart, and concomitant cytokine production may occur in heart failure. This leads to systemic chronic inflammation, along with an imbalance of immune cells (macrophages) in the heart, resulting in chronic inflammation and progressive fibrosis, potentially leading to decreased cardiac function. The bone marrow and spleen are involved in altered iron metabolism and anemia, which also contribute to HFpEF. This review presents the concept of an interplay between the heart, spleen, and bone marrow in the setting of HFpEF, with a particular focus on extramedullary hematopoiesis in the spleen. The aim of this review is to discern whether the spleen can serve as a new therapeutic target for HFpEF.


Assuntos
Medula Óssea , Insuficiência Cardíaca , Hematopoese Extramedular , Baço , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Hematopoese Extramedular/fisiologia , Baço/imunologia , Baço/metabolismo , Volume Sistólico/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/imunologia , Inflamação
4.
Science ; 377(6603): 292-297, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857592

RESUMO

Hematopoietic mosaic loss of Y chromosome (mLOY) is associated with increased risk of mortality and age-related diseases in men, but the causal and mechanistic relationships have yet to be established. Here, we show that male mice reconstituted with bone marrow cells lacking the Y chromosome display increased mortality and age-related profibrotic pathologies including reduced cardiac function. Cardiac macrophages lacking the Y chromosome exhibited polarization toward a more fibrotic phenotype, and treatment with a transforming growth factor ß1-neutralizing antibody ameliorated cardiac dysfunction in mLOY mice. A prospective study revealed that mLOY in blood is associated with an increased risk for cardiovascular disease and heart failure-associated mortality. Together, these results indicate that hematopoietic mLOY causally contributes to fibrosis, cardiac dysfunction, and mortality in men.


Assuntos
Envelhecimento , Deleção Cromossômica , Insuficiência Cardíaca , Células-Tronco Hematopoéticas , Miocárdio , Cromossomo Y , Envelhecimento/genética , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Macrófagos , Masculino , Camundongos , Mosaicismo , Miocárdio/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Cromossomo Y/genética
5.
Heart Fail Clin ; 18(3): 349-359, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35718411

RESUMO

Clonal hematopoiesis is a precancerous state that is recognized as a new causal risk factor for cardiovascular disease. Therapy-related clonal hematopoiesis is a condition that is often found in cancer survivors. These clonal expansions are caused by mutations in DNA damage-response pathway genes that allow hematopoietic stem cells to undergo positive selection in response to the genotoxic stress. These mutant cells increasingly give rise to progeny leukocytes that display enhanced proinflammatory properties. Recent experimental studies suggest that therapy-related clonal hematopoiesis may contribute to the medium- to long-term risk of genotoxic therapies on the cardiovascular system.


Assuntos
Doenças Cardiovasculares , Neoplasias , Doenças Cardiovasculares/etiologia , Hematopoiese Clonal/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Neoplasias/complicações
6.
Cardiovasc Res ; 118(6): 1413-1432, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34164655

RESUMO

Clonal haematopoiesis (CH) is a phenomenon whereby somatic mutations confer a fitness advantage to haematopoietic stem and progenitor cells (HSPCs) and thus facilitate their aberrant clonal expansion. These mutations are carried into progeny leucocytes leading to a situation whereby a substantial fraction of an individual's blood cells originate from the HSPC mutant clone. Although this condition rarely progresses to a haematological malignancy, circulating blood cells bearing the mutation have the potential to affect other organ systems as they infiltrate into tissues under both homeostatic and disease conditions. Epidemiological and clinical studies have revealed that CH is highly prevalent in the elderly and is associated with an increased risk of cardiovascular disease and mortality. Recent experimental studies in murine models have assessed the most commonly mutated 'driver' genes associated with CH, and have provided evidence for mechanistic connections between CH and cardiovascular disease. A deeper understanding of the mechanisms by which specific CH mutations promote disease pathogenesis is of importance, as it could pave the way for individualized therapeutic strategies targeting the pathogenic CH gene mutations in the future. Here, we review the epidemiology of CH and the mechanistic work from studies using murine disease models, with a particular focus on the strengths and limitations of these experimental systems. We intend for this review to help investigators select the most appropriate models to study CH in the setting of cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Hematopoiese Clonal , Idoso , Animais , Doenças Cardiovasculares/epidemiologia , Hematopoiese Clonal/genética , Modelos Animais de Doenças , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Camundongos , Mutação
8.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236050

RESUMO

Therapy-related clonal hematopoiesis (t-CH) is often observed in cancer survivors. This form of clonal hematopoiesis typically involves somatic mutations in driver genes that encode components of the DNA damage response and confer hematopoietic stem and progenitor cells (HSPCs) with resistance to the genotoxic stress of the cancer therapy. Here, we established a model of TP53-mediated t-CH through the transfer of Trp53 mutant HSPCs to mice, followed by treatment with a course of the chemotherapeutic agent doxorubicin. These studies revealed that neutrophil infiltration in the heart significantly contributes to doxorubicin-induced cardiac toxicity and that this condition is amplified in the model of Trp53-mediated t-CH. These data suggest that t-CH could contribute to the elevated heart failure risk that occurs in cancer survivors who have been treated with genotoxic agents.


Assuntos
Cardiotoxicidade , Hematopoiese Clonal/genética , Dano ao DNA/efeitos dos fármacos , Doxorrubicina , Infiltração de Neutrófilos/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Doxorrubicina/toxicidade , Técnicas de Transferência de Genes , Camundongos
9.
J Vis Exp ; (171)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34125083

RESUMO

Clonal hematopoiesis is a prevalent age-associated condition that results from the accumulation of somatic mutations in hematopoietic stem and progenitor cells (HSPCs). Mutations in driver genes, that confer cellular fitness, can lead to the development of expanding HSPC clones that increasingly give rise to progeny leukocytes harboring the somatic mutation. Because clonal hematopoiesis has been associated with heart disease, stroke, and mortality, the development of experimental systems that model these processes is key to understanding the mechanisms that underly this new risk factor. Bone marrow transplantation procedures involving myeloablative conditioning in mice, such as total-body irradiation (TBI), are commonly employed to study the role of immune cells in cardiovascular diseases. However, simultaneous damage to the bone marrow niche and other sites of interest, such as the heart and brain, is unavoidable with these procedures. Thus, our lab has developed two alternative methods to minimize or avoid possible side effects caused by TBI: 1) bone marrow transplantation with irradiation shielding and 2) adoptive BMT to non-conditioned mice. In shielded organs, the local environment is preserved allowing for the analysis of clonal hematopoiesis while the function of resident immune cells is unperturbed. In contrast, the adoptive BMT to non-conditioned mice has the additional advantage that both the local environments of the organs and the hematopoietic niche are preserved. Here, we compare three different hematopoietic cell reconstitution approaches and discuss their strengths and limitations for studies of clonal hematopoiesis in cardiovascular disease.


Assuntos
Transplante de Medula Óssea , Hematopoiese Clonal , Animais , Medula Óssea , Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Condicionamento Pré-Transplante
10.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32154790

RESUMO

Clonal hematopoiesis of indeterminate potential is prevalent in elderly individuals and associated with increased risks of all-cause mortality and cardiovascular disease. However, mouse models to study the dynamics of clonal hematopoiesis and its consequences on the cardiovascular system under homeostatic conditions are lacking. We developed a model of clonal hematopoiesis using adoptive transfer of unfractionated ten-eleven translocation 2-mutant (Tet2-mutant) bone marrow cells into nonirradiated mice. Consistent with age-related clonal hematopoiesis observed in humans, these mice displayed a progressive expansion of Tet2-deficient cells in multiple hematopoietic stem and progenitor cell fractions and blood cell lineages. The expansion of the Tet2-mutant fraction was also observed in bone marrow-derived CCR2+ myeloid cell populations within the heart, but there was a negligible impact on the yolk sac-derived CCR2- cardiac-resident macrophage population. Transcriptome profiling revealed an enhanced inflammatory signature in the donor-derived macrophages isolated from the heart. Mice receiving Tet2-deficient bone marrow cells spontaneously developed age-related cardiac dysfunction characterized by greater hypertrophy and fibrosis. Altogether, we show that Tet2-mediated hematopoiesis contributes to cardiac dysfunction in a nonconditioned setting that faithfully models human clonal hematopoiesis in unperturbed bone marrow. Our data support clinical findings that clonal hematopoiesis per se may contribute to diminished health span.


Assuntos
Hematopoiese Clonal/fisiologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Cardiopatias , Proteínas Proto-Oncogênicas/metabolismo , Transferência Adotiva , Envelhecimento/patologia , Animais , Dioxigenases , Células-Tronco Hematopoéticas , Macrófagos , Camundongos
11.
JACC Basic Transl Sci ; 5(2): 196-207, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32140625

RESUMO

Heart failure is a common disease with poor prognosis that is associated with cardiac immune cell infiltration and dysregulated cytokine expression. Recently, the clonal expansion of hematopoietic cells with acquired (i.e., nonheritable) DNA mutations, a process referred to as clonal hematopoiesis, has been reported to be associated with cardiovascular diseases including heart failure. Mechanistic studies have shown that leukocytes that harbor these somatic mutations display altered inflammatory characteristics that worsen the phenotypes associated with heart failure in experimental models. In this review, we summarize recent epidemiological and experimental evidence that support the hypothesis that clonal hematopoiesis-mediated immune cell dysfunction contributes to heart failure and cardiovascular disease in general.

12.
JACC Basic Transl Sci ; 4(6): 684-697, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31709318

RESUMO

Janus kinase 2 (valine to phenylalanine at residue 617) (JAK2 V617F ) mutations lead to myeloproliferative neoplasms associated with elevated myeloid, erythroid, and megakaryocytic cells. Alternatively these same mutations can lead to the condition of clonal hematopoiesis with no impact on blood cell counts. Here, a model of myeloid-restricted JAK2 V617F expression from lineage-negative bone marrow cells was developed and evaluated. This model displayed greater cardiac inflammation and dysfunction following permanent left anterior descending artery ligation and transverse aortic constriction. These data suggest that JAK2 V617F mutations arising in myeloid progenitor cells may contribute to cardiovascular disease by promoting the proinflammatory properties of circulating myeloid cells.

13.
J Vis Exp ; (152)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31633690

RESUMO

Manipulating genes in hematopoietic stem cells using conventional transgenesis approaches can be time-consuming, expensive, and challenging. Benefiting from advances in genome editing technology and lentivirus-mediated transgene delivery systems, an efficient and economical method is described here that establishes mice in which genes are manipulated specifically in hematopoietic stem cells. Lentiviruses are used to transduce Cas9-expressing lineage-negative bone marrow cells with a guide RNA (gRNA) targeting specific genes and a red fluorescence reporter gene (RFP), then these cells are transplanted into lethally-irradiated C57BL/6 mice. Mice transplanted with lentivirus expressing non-targeting gRNA are used as controls. Engraftment of transduced hematopoietic stem cells are evaluated by flow cytometric analysis of RFP-positive leukocytes of peripheral blood. Using this method, ~90% transduction of myeloid cells and ~70% of lymphoid cells at 4 weeks after transplantation can be achieved. Genomic DNA is isolated from RFP-positive blood cells, and portions of the targeted site DNA are amplified by PCR to validate the genome editing. This protocol provides a high-throughput evaluation of hematopoiesis-regulatory genes and can be extended to a variety of mouse disease models with hematopoietic cell involvement.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Animais , Sequência de Bases , Medula Óssea/efeitos da radiação , Células da Medula Óssea/citologia , Linhagem da Célula , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Polietilenoimina/química , RNA Guia de Cinetoplastídeos/genética
14.
FASEB J ; 33(12): 14147-14158, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31647879

RESUMO

Glutaredoxin-1 (Glrx) is a small cytosolic enzyme that removes S-glutathionylation, glutathione adducts of protein cysteine residues, thus modulating redox signaling and gene transcription. Although Glrx up-regulation prevented endothelial cell (EC) migration and global Glrx transgenic mice had impaired ischemic vascularization, the effects of cell-specific Glrx overexpression remained unknown. Here, we examined the role of EC-specific Glrx up-regulation in distinct models of angiogenesis; namely, hind limb ischemia and tumor angiogenesis. EC-specific Glrx transgenic (EC-Glrx TG) overexpression in mice significantly impaired EC migration in Matrigel implants and hind limb revascularization after femoral artery ligation. Additionally, ECs migrated less into subcutaneously implanted B16F0 melanoma tumors as assessed by decreased staining of EC markers. Despite reduced angiogenesis, EC-Glrx TG mice unexpectedly developed larger tumors compared with control mice. EC-Glrx TG mice showed higher levels of VEGF-A in the tumors, indicating hypoxia, which may stimulate tumor cells to form vascular channels without EC, referred to as vasculogenic mimicry. These data suggest that impaired ischemic vascularization does not necessarily associate with suppression of tumor growth, and that antiangiogenic therapies may be ineffective for melanoma tumors because of their ability to implement vasculogenic mimicry during hypoxia.-Yura, Y., Chong, B. S. H., Johnson, R. D., Watanabe, Y., Tsukahara, Y., Ferran, B., Murdoch, C. E., Behring, J. B., McComb, M. E., Costello, C. E., Janssen-Heininger, Y. M. W., Cohen, R. A., Bachschmid, M. M., Matsui, R. Endothelial cell-specific redox gene modulation inhibits angiogenesis but promotes B16F0 tumor growth in mice.


Assuntos
Células Endoteliais/metabolismo , Glutarredoxinas/metabolismo , Melanoma/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Feminino , Artéria Femoral/cirurgia , Glutarredoxinas/genética , Membro Posterior/irrigação sanguínea , Membro Posterior/cirurgia , Isquemia , Ligadura , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais
15.
Cell Struct Funct ; 41(2): 105-20, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27334702

RESUMO

Protein phosphorylation plays an important role in the physiological regulation of cardiac function. Myocardial contraction and pathogenesis of cardiac diseases have been reported to be associated with adaptive or maladaptive protein phosphorylation; however, phosphorylation signaling in the heart is not fully elucidated. We recently developed a novel kinase-interacting substrate screening (KISS) method for exhaustive screening of protein kinase substrates, using mass spectrometry and affinity chromatography. First, we examined protein phosphorylation by extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), which has been relatively well studied in cardiomyocytes. The KISS method showed that ERK and PKA mediated the phosphorylation of known cardiac-substrates of each kinase such as Rps6ka1 and cTnI, respectively. Using this method, we found about 330 proteins as Rho-kinase-mediated substrates, whose substrate in cardiomyocytes is unknown. Among them, CARP/Ankrd1, a muscle ankyrin repeat protein, was confirmed as a novel Rho-kinase-mediated substrate. We also found that non-phosphorylatable form of CARP repressed cardiac hypertrophy-related gene Myosin light chain-2v (MLC-2v) promoter activity, and decreased cell size of heart derived H9c2 myoblasts more efficiently than wild type-CARP. Thus, focused proteomics enable us to reveal a novel signaling pathway in the heart.


Assuntos
Miocárdio/enzimologia , Proteômica , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Cromatografia de Afinidade , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imuno-Histoquímica , Espectrometria de Massas , Microscopia de Fluorescência , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Ratos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Especificidade por Substrato , Quinases Associadas a rho/química
16.
J Cell Biol ; 209(6): 895-912, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26101221

RESUMO

Protein kinases play pivotal roles in numerous cellular functions; however, the specific substrates of each protein kinase have not been fully elucidated. We have developed a novel method called kinase-interacting substrate screening (KISS). Using this method, 356 phosphorylation sites of 140 proteins were identified as candidate substrates for Rho-associated kinase (Rho-kinase/ROCK2), including known substrates. The KISS method was also applied to additional kinases, including PKA, MAPK1, CDK5, CaMK1, PAK7, PKN, LYN, and FYN, and a lot of candidate substrates and their phosphorylation sites were determined, most of which have not been reported previously. Among the candidate substrates for Rho-kinase, several functional clusters were identified, including the polarity-associated proteins, such as Scrib. We found that Scrib plays a crucial role in the regulation of subcellular contractility by assembling into a ternary complex with Rho-kinase and Shroom2 in a phosphorylation-dependent manner. We propose that the KISS method is a comprehensive and useful substrate screen for various kinases.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Quinases Associadas a rho/metabolismo , Proteínas Contráteis/metabolismo , Humanos , Fosforilação , Especificidade por Substrato
18.
Cell Struct Funct ; 40(1): 1-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25399539

RESUMO

Protein kinase A (PKA) is a serine/threonine kinase whose activity depends on the levels of cyclic AMP (cAMP). PKA plays essential roles in numerous cell types such as myocytes and neurons. Numerous substrate screens have been attempted to clarify the entire scope of the PKA signaling cascade, but it is still underway. Here, we performed a comprehensive screen that consisted of immunoprecipitation and mass spectrometry, with a focus on the identification of PKA substrates. The lysate of HeLa cells treated with Forskolin (FSK)/3-isobutyl methyl xanthine (IBMX) and/or H-89 was subjected to immunoprecipitation using anti-phospho-PKA substrate antibody. The identity of the phosophoproteins and phosphorylation sites in the precipitants was determined using liquid chromatography tandem mass spectrometry (LC/MS/MS). We obtained 112 proteins as candidate substrates and 65 candidate sites overall. Among the candidate substrates, Rho-kinase/ROCK2 was confirmed to be a novel substrate of PKA both in vitro and in vivo. In addition to Rho-kinase, we found more than a hundred of novel candidate substrates of PKA using this screen, and these discoveries provide us with new insights into PKA signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteômica , 1-Metil-3-Isobutilxantina/farmacologia , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Colforsina/farmacologia , Células HeLa , Humanos , Imunoprecipitação , Isoquinolinas/farmacologia , Espectrometria de Massas , Fosforilação/efeitos dos fármacos , Ligação Proteica , Sulfonamidas/farmacologia , Quinases Associadas a rho/química , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA