Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(5)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300704

RESUMO

Adoptive transfer of immunoregulatory cells can prevent or ameliorate graft-versus-host disease (GVHD), which remains the main cause of nonrelapse mortality after allogeneic hematopoietic stem cell transplantation. Mucosal-associated invariant T (MAIT) cells were recently associated with tissue repair capacities and with lower rates of GVHD in humans. Here, we analyzed the immunosuppressive effect of MAIT cells in an in vitro model of alloreactivity and explored their adoptive transfer in a preclinical xenogeneic GVHD model. We found that MAIT cells, whether freshly purified or short-term expanded, dose-dependently inhibited proliferation and activation of alloreactive T cells. In immunodeficient mice injected with human PBMCs, MAIT cells greatly delayed GVHD onset and decreased severity when transferred early after PBMC injection but could also control ongoing GVHD when transferred at delayed time points. This effect was associated with decreased proliferation and effector function of human T cells infiltrating tissues of diseased mice and was correlated with lower circulating IFN-γ and TNF-α levels and increased IL-10 levels. MAIT cells acted partly in a contact-dependent manner, which likely required direct interaction of their T cell receptor with MHC class I-related molecule (MR1) induced on host-reactive T cells. These results support the setup of clinical trials using MAIT cells as universal therapeutic tools to control severe GVHD or mucosal inflammatory disorders.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Células T Invariantes Associadas à Mucosa , Humanos , Camundongos , Animais , Leucócitos Mononucleares , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Receptores de Antígenos de Linfócitos T
2.
Immunity ; 56(1): 78-92.e6, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630919

RESUMO

Tissue repair processes maintain proper organ function following mechanical or infection-related damage. In addition to antibacterial properties, mucosal associated invariant T (MAIT) cells express a tissue repair transcriptomic program and promote skin wound healing when expanded. Herein, we use a human-like mouse model of full-thickness skin excision to assess the underlying mechanisms of MAIT cell tissue repair function. Single-cell RNA sequencing analysis suggested that skin MAIT cells already express a repair program at steady state. Following skin excision, MAIT cells promoted keratinocyte proliferation, thereby accelerating healing. Using skin grafts, parabiosis, and adoptive transfer experiments, we show that MAIT cells migrated into the wound in a T cell receptor (TCR)-independent but CXCR6 chemokine receptor-dependent manner. Amphiregulin secreted by MAIT cells following excision promoted wound healing. Expression of the repair function was probably independent of sustained TCR stimulation. Overall, our study provides mechanistic insights into MAIT cell wound healing function in the skin.


Assuntos
Anfirregulina , Antígenos de Histocompatibilidade Classe I , Células T Invariantes Associadas à Mucosa , Cicatrização , Animais , Humanos , Camundongos , Anfirregulina/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
3.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34615705

RESUMO

BACKGROUND: Mucosal-associated invariant T (MAIT) cells are semi-invariant T cells that recognize microbial antigens presented by the highly conserved MR1 molecule. MAIT cells are predominantly localized in the liver and barrier tissues and are potent effectors of antimicrobial defense. MAIT cells are very few at birth and accumulate gradually over a period of about 6 years during the infancy. The cytotoxic potential of MAIT cells, as well as their newly described regulatory and tissue repair functions, open the possibility of exploiting their properties in adoptive therapy. A prerequisite for their use as 'universal' cells would be a lack of alloreactive potential, which remains to be demonstrated. METHODS: We used ex vivo, in vitro and in vivo models to determine if human MAIT cells contribute to allogeneic responses. RESULTS: We show that recovery of MAIT cells after allogeneic hematopoietic stem cell transplantation recapitulates their slow physiological expansion in early childhood, independent of recovery of non-MAIT T cells. In vitro, signals provided by allogeneic cells and cytokines do not induce sustained MAIT cell proliferation. In vivo, human MAIT cells do not expand nor accumulate in tissues in a model of T-cell-mediated xenogeneic graft-versus-host disease in immunodeficient mice. CONCLUSIONS: Altogether, these results provide evidence that MAIT cells are devoid of alloreactive potential and pave the way for harnessing their translational potential in universal adoptive therapy overcoming barriers of HLA disparity. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov number NCT02403089.


Assuntos
Imunidade Adaptativa/imunologia , Imunoterapia/métodos , Células T Invariantes Associadas à Mucosa/imunologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA