Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 594(4): 611-624, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581313

RESUMO

Ras-selective lethal small molecule 3 (RSL3), a drug candidate prototype for cancer chemotherapy, triggers ferroptosis by inactivating the glutathione peroxidase glutathione peroxidase 4 (GPx4). Here, we report the purification of the protein indispensable for GPx4 inactivation by RSL3. Mass spectrometric analysis identified 14-3-3 isoforms as candidates, and recombinant human 14-3-3ε confirms the identification. The function of 14-3-3ε is redox-regulated. Moreover, overexpression or silencing of the gene coding for 14-3-3ε consistently controls the inactivation of GPx4 by RSL3. The interaction of GPx4 with a redox-regulated adaptor protein operating in cell signaling further contributes to frame it within redox-regulated pathways of cell survival and death and opens new therapeutic perspectives.


Assuntos
Proteínas 14-3-3/metabolismo , Carbolinas/farmacologia , Ferroptose/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Ratos
2.
Anal Bioanal Chem ; 410(12): 2949-2959, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29532191

RESUMO

Surface active maghemite nanoparticles (SAMNs) are able to recognize and bind selected proteins in complex biological systems, forming a hard protein corona. Upon a 5-min incubation in bovine whey from mastitis-affected cows, a significant enrichment of a single peptide characterized by a molecular weight at 4338 Da originated from the proteolysis of aS1-casein was observed. Notably, among the large number of macromolecules in bovine milk, the detection of this specific peptide can hardly be accomplished by conventional analytical techniques. The selective formation of a stable binding between the peptide and SAMNs is due to the stability gained by adsorption-induced surface restructuration of the nanomaterial. We attributed the surface recognition properties of SAMNs to the chelation of iron(III) sites on their surface by sterically compatible carboxylic groups of the peptide. The specific peptide recognition by SAMNs allows its easy determination by MALDI-TOF mass spectrometry, and a threshold value of its normalized peak intensity was identified by a logistic regression approach and suggested for the rapid diagnosis of the pathology. Thus, the present report proposes the analysis of hard protein corona on nanomaterials as a perspective for developing fast analytical procedures for the diagnosis of mastitis in cows. Moreover, the huge simplification of proteome complexity by exploiting the selectivity derived by the peculiar SAMN surface topography, due to the iron(III) distribution pattern, could be of general interest, leading to competitive applications in food science and in biomedicine, allowing the rapid determination of hidden biomarkers by a cutting edge diagnostic strategy. Graphical abstract The topography of iron(III) sites on surface active maghemite nanoparticles (SAMNs) allows the recognition of sterically compatible carboxylic groups on proteins and peptides in complex biological matrixes. The analysis of hard protein corona on SAMNs led to the determination of a biomarker for cow mastitis in milk by MALDI-TOF mass spectrometry.


Assuntos
Compostos Férricos/química , Mastite Bovina/diagnóstico , Proteínas do Leite/análise , Nanopartículas/química , Coroa de Proteína/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Soro do Leite/química , Sequência de Aminoácidos , Animais , Biomarcadores/análise , Bovinos , Feminino , Leite/química , Modelos Moleculares , Peptídeos/análise , Proteômica/métodos
3.
Arch Biochem Biophys ; 617: 120-128, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27638050

RESUMO

Reversible oxidation of Cys residues is a crucial element of redox homeostasis and signaling. According to a popular concept in oxidative stress signaling, the oxidation of targets of signals can only take place following an overwhelming of the cellular antioxidant capacity. This concept, however, ignores the activation of feedback mechanisms possibly leading to a paradoxical effect. In a model of cancer stem cells (CSC), stably overexpressing the TAZ oncogene, we observed that the increased formation of oxidants is associated with a globally more reduced state of proteins. Redox proteomics revealed that several proteins, capable of undergoing reversible redox transitions, are indeed more reduced while just few are more oxidized. Among the proteins more oxidized, G6PDH emerges as both more expressed and activated by oxidation. This accounts for the observed more reduced state of the NADPH/NADP+ couple. The dynamic redox flux generating this apparently paradoxical effect is rationalized in a computational system biology model highlighting the crucial role of G6PDH activity on the rate of redox transitions eventually leading to the reduction of reversible redox switches.


Assuntos
Células-Tronco Neoplásicas/citologia , Oxirredução , Linhagem Celular Transformada , Linhagem Celular Tumoral , Glucosefosfato Desidrogenase/metabolismo , Glutarredoxinas/metabolismo , Humanos , Mutação , Nucleotídeos/genética , Estresse Oxidativo , Oxigênio/química , Proteômica , Piridinas/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo
4.
Arch Biochem Biophys ; 617: 26-37, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693037

RESUMO

Oxidation of critical signaling protein cysteines regulated by H2O2 has been considered to involve sulfenic acid (RSOH) formation. RSOH may subsequently form either a sulfenyl amide (RSNHR') with a neighboring amide, or a mixed disulfide (RSSR') with another protein cysteine or glutathione. Previous studies have claimed that RSOH can be detected as an adduct (e.g., with 5,5-dimethylcyclohexane-1,3-dione; dimedone). Here, kinetic data are discussed which indicate that few proteins can form RSOH under physiological signaling conditions. We also present experimental evidence that indicates that (1) dimedone reacts rapidly with sulfenyl amides, and more rapidly than with sulfenic acids, and (2) that disulfides can react reversibly with amides to form sulfenyl amides. As some proteins are more stable as the sulfenyl amide than as a glutathionylated species, the former may account for some of the species previously identified as the "sulfenome" - the cellular complement of reversibly-oxidized thiol proteins generated via sulfenic acids.


Assuntos
Cicloexanonas/química , Cisteína/química , Oxigênio/química , Ácidos Sulfênicos/química , Amidas/química , Dissulfetos/química , Glutationa/química , Humanos , Peróxido de Hidrogênio/química , Cinética , Espectrometria de Massas , Oxirredução , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Transdução de Sinais , Compostos de Sulfidrila/química
5.
Free Radic Biol Med ; 87: 1-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163004

RESUMO

Glutathione peroxidases (GPxs) are enzymes working with either selenium or sulfur catalysis. They adopted diverse functions ranging from detoxification of H(2)O(2) to redox signaling and differentiation. The relative stability of the selenoenzymes, however, remained enigmatic in view of the postulated involvement of a highly unstable selenenic acid form during catalysis. Nevertheless, density functional theory calculations obtained with a representative active site model verify the mechanistic concept of GPx catalysis and underscore its efficiency. However, they also allow that the selenenic acid, in the absence of the reducing substrate, reacts with a nitrogen in the active site. MS/MS analysis of oxidized rat GPx4 complies with the predicted structure, an 8-membered ring, in which selenium is bound as selenenylamide to the protein backbone. The intermediate can be re-integrated into the canonical GPx cycle by glutathione, whereas, under denaturing conditions, its selenium moiety undergoes ß-cleavage with formation of a dehydro-alanine residue. The selenenylamide bypass prevents destruction of the redox center due to over-oxidation of the selenium or its elimination and likely allows fine-tuning of GPx activity or alternate substrate reactions for regulatory purposes.


Assuntos
Glutationa Peroxidase/química , Glutationa/química , Oxirredução , Selenocisteína/química , Animais , Catálise , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/química , Cinética , Teoria Quântica , Ratos , Selênio/química , Selenocisteína/metabolismo , Enxofre/química , Espectrometria de Massas em Tandem
6.
Free Radic Biol Med ; 83: 352-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25724691

RESUMO

The glutathione peroxidase homologs (GPxs) efficiently reduce hydroperoxides using electrons from glutathione (GSH), thioredoxin (Trx), or protein disulfide isomerase (PDI). Trx is preferentially used by the GPxs of the majority of bacteria, invertebrates, plants, and fungi. GSH or PDI, instead, is preferentially used by vertebrate GPxs that operate by Sec or Cys catalysis, respectively. Mammalian GPx7 and GPx8 are unique homologs that contain a peroxidatic Cys (CP). Being reduced by PDI and located within the endoplasmic reticulum (ER), these enzymes have been involved in oxidative protein folding. Kinetic analysis indicates that oxidation of PDI by recombinant GPx7 occurs at a much faster rate than that of GSH. Nonetheless, activity measurement suggests that, at physiological concentrations, a competition between these two substrates takes place, with the rate of PDI oxidation by GPx7 controlled by the concentration of GSH, whereas the GSSG produced in the competing reaction contributes to the ER redox buffer. A mechanism has been proposed for GPx7 involving two Cys residues, in which an intramolecular disulfide of the CP is formed with an alleged resolving Cys (CR) located in the strongly conserved FPCNQ motif (C86 in humans), a noncanonical position in GPxs. Kinetic measurements and comparison with the other thiol peroxidases containing a functional CR suggest that a resolving function of C86 in the catalytic cycle is very unlikely. We propose that GPx7 is catalytically active as a 1-Cys-GPx, in which CP both reduces H2O2 and oxidizes PDI, and that the CP-C86 disulfide has instead the role of stabilizing the oxidized peroxidase in the absence of the reducing substrate.


Assuntos
Proteínas de Transporte/metabolismo , Glutationa/metabolismo , Peroxidases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Catálise , Glutationa Peroxidase , Humanos , Dados de Sequência Molecular , Oxirredução , Peroxidases/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Free Radic Biol Med ; 71: 90-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24642086

RESUMO

Reversible oxidation of cysteine residues is a relevant posttranslational modification of proteins. However, the low activation energy and transitory nature of the redox switch and the intrinsic complexity of the analysis render quite challenging the aim of a rigorous high-throughput screening of the redox status of redox-sensitive cysteine residues. We describe here a quantitative workflow for redox proteomics, where the ratio between the oxidized forms of proteins in the control vs treated samples is determined by a robust label-free approach. We critically present the convenience of the procedure by specifically addressing the following aspects: (i) the accurate ratio, calculated from the whole set of identified peptides rather than just isotope-tagged fragments; (ii) the application of a robust analytical pipeline to frame the most consistent data averaged over the biological variability; (iii) the relevance of using stringent criteria of analysis, even at the cost of losing potentially interesting but statistically uncertain data. The pipeline has been assessed on red blood cell membrane challenged with diamide as a model of a mild oxidative condition. The cluster of identified proteins encompassed components of the cytoskeleton more oxidized. Indirectly, our analysis confirmed the previous observation that oxidized hemoglobin binds to membranes while oxidized peroxiredoxin 2 loses affinity.


Assuntos
Cisteína/química , Membrana Eritrocítica/química , Proteínas de Membrana/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Cisteína/metabolismo , Citoesqueleto/química , Diamida/química , Diamida/farmacologia , Dissulfetos/química , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Hemoglobinas/metabolismo , Humanos , Oxirredução , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Ligação Proteica
8.
Biochim Biophys Acta ; 1830(6): 3846-57, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23454490

RESUMO

BACKGROUND: Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs. METHODS: Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme-substrate and protein-protein interaction were analyzed by molecular docking and surface plasmon resonance analysis. RESULTS: Oxidation of the CP is fast (k+1>10(3)M(-1)s(-1)), however the rate of reduction by GSH is slow (k'+2=12.6M(-1)s(-1)) even though molecular docking indicates a strong GSH-GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+1>10(3)M(-1)s(-1)), but not by Trx. By surface plasmon resonance analysis, a KD=5.2µM was calculated for PDI-GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo. CONCLUSIONS: GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates. GENERAL SIGNIFICANCE: In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.


Assuntos
Proteínas de Transporte/química , Glutationa/química , Simulação de Acoplamento Molecular , Peroxidases/química , Isomerases de Dissulfetos de Proteínas/química , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Catálise , Glutationa/genética , Glutationa/metabolismo , Glutationa Peroxidase , Humanos , Camundongos , Mutação , Oxirredução , Peroxidases/genética , Peroxidases/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato/genética
9.
J Proteome Res ; 10(2): 416-28, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21128686

RESUMO

Neuroblastoma is one of the most aggressive solid tumors in the childhood. Therapy resistance to anticancer drugs represents the major limitation to the effectiveness of clinical treatment. To better understand the mechanisms underlying cisplatin resistance, we performed a comparative proteomic study of the human neuroblastoma cell line SH-SY5Y and its cisplatin resistant counterpart by both the classical 2-DE electrophoresis coupled to mass spectrometry and the more innovative label-free nLC-MS(E). The differentially expressed proteins were classified by bioinformatic tools according to their biological functions and their involvement in several cellular processes. Moreover, a meta-mining investigation of protein ontologies was also performed on available data from previously published proteomics studies to highlight the modulation of significant cellular pathways, which may regulate the sensitivity of neuroblastoma to cisplatin. In particular, we hypothesized a major role of the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. Confocal microscopy experiments, enzyme assay, and Western blotting of proteins regulated by Nrf2 provided evidences that this pathway, playing a protective role in normal cells, may represent a potential novel target to control cisplatin resistance in neuroblastoma.


Assuntos
Cisplatino/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Proteoma/metabolismo , Proteômica , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Simulação por Computador , Mineração de Dados , Bases de Dados de Proteínas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Humanos , Espectrometria de Massas , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoma/análise , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA