Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003529

RESUMO

Early detection of fatal and disabling diseases such as cancer, neurological and autoimmune dysfunctions is still desirable yet challenging to improve quality of life and longevity. Peptoids (N-substituted glycine oligomers) are a relatively new class of peptidomimetics, being highly versatile and capable of mimicking the architectures and the activities of the peptides but with a marked resistance to proteases and a propensity to cross the cellular membranes over the peptides themselves. For these properties, they have gained an ever greater interest in applications in bioengineering and biomedical fields. In particular, the present manuscript is to our knowledge the only review focused on peptoids for diagnostic applications and covers the last decade's literature regarding peptoids as tools for early diagnosis of pathologies with a great impact on human health and social behavior. The review indeed provides insights into the peptoid employment in targeted cancer imaging and blood-based screening of neurological and autoimmune diseases, and it aims to attract the scientific community's attention to continuing and sustaining the investigation of these peptidomimetics in the diagnosis field considering their promising peculiarities.


Assuntos
Doenças Autoimunes , Neoplasias , Peptidomiméticos , Peptoides , Humanos , Peptoides/química , Peptidomiméticos/química , Qualidade de Vida , Peptídeos , Neoplasias/diagnóstico , Doenças Autoimunes/diagnóstico
2.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232339

RESUMO

The crucial role of integrin in pathological processes such as tumor progression and metastasis formation has inspired intense efforts to design novel pharmaceutical agents modulating integrin functions in order to provide new tools for potential therapies. In the past decade, we have investigated the biological proprieties of the chimeric peptide RGDechi, containing a cyclic RGD motif linked to an echistatin C-terminal fragment, able to specifically recognize αvß3 without cross reacting with αvß5 and αIIbß3 integrin. Additionally, we have demonstrated using two RGDechi-derived peptides, called RGDechi1-14 and ψRGDechi, that chemical modifications introduced in the C-terminal part of the peptide alter or abolish the binding to the αvß3 integrin. Here, to shed light on the structural and dynamical determinants involved in the integrin recognition mechanism, we investigate the effects of the chemical modifications by exploring the conformational space sampled by RGDechi1-14 and ψRGDechi using an integrated natural-abundance NMR/MD approach. Our data demonstrate that the flexibility of the RGD-containing cycle is driven by the echistatin C-terminal region of the RGDechi peptide through a coupling mechanism between the N- and C-terminal regions.


Assuntos
Integrina alfaVbeta3 , Peptídeos , Integrina alfaVbeta3/metabolismo , Espectroscopia de Ressonância Magnética , Oligopeptídeos/química , Peptídeos/química , Preparações Farmacêuticas
3.
Molecules ; 26(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34500662

RESUMO

Multiple sclerosis (MS) belongs to demyelinating diseases, which are progressive and highly debilitating pathologies that imply a high burden both on individual patients and on society. Currently, several treatment strategies differ in the route of administration, adverse events, and possible risks. Side effects associated with multiple sclerosis medications range from mild symptoms, such as flu-like or irritation at the injection site, to serious ones, such as progressive multifocal leukoencephalopathy and other life-threatening events. Moreover, the agents so far available have proved incapable of fully preventing disease progression, mostly during the phases that consist of continuous, accumulating disability. Thus, new treatment strategies, able to halt or even reverse disease progression and specific for targeting solely the pathways that contribute to the disease pathogenesis, are highly desirable. Here, we provide an overview of the recent literature about peptide-based systems tested on experimental autoimmune encephalitis (EAE) models. Since peptides are considered a unique therapeutic niche and important elements in the pharmaceutical landscape, they could open up new therapeutic opportunities for the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Animais , Humanos , Peptídeos/metabolismo
4.
Molecules ; 25(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961684

RESUMO

Recently, the research community has become increasingly concerned with the receptor αvß5, a member of the well-known integrin family. Different ongoing studies have evidenced that αvß5 integrin regulates not only physiological processes but also a wide array of pathological events, suggesting the receptor as a valuable biomarker to specifically target for therapeutic/diagnostic purposes. Remarkably, in some tumors the involvement of the receptor in cell proliferation, tumor dissemination and angiogenesis is well-documented. In this scenario, the availability of a selective αvß5 antagonist without 'off-target' protein effects may improve survival rate in patients with highly aggressive tumors, such as hepatocellular carcinoma. We recently reported a cyclic peptide, RGDechi15D, obtained by structure-activity studies. To our knowledge it represents the first peptide-based molecule reported in the literature able to specifically bind αvß5 integrin and not cross react with αvß3. Here we demonstrated the ability of the peptide to diminish both adhesion and invasion of HepG2 cells, an in vitro model system for hepatocellular carcinoma, to reduce the cell proliferation through an apoptotic process, and to interfere with the PI3K pathway. The peptide, also decreases the formation of new vessels in endothelial cells. Taken together these results indicate that the peptide can be considered a promising molecule with properties suited to be assessed in the future for its validation as a selective therapeutic/diagnostic weapon in hepatocarcinoma.


Assuntos
Peptídeos/metabolismo , Receptores de Vitronectina/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Oligopeptídeos/química , Peptídeos/química , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Vitronectina/antagonistas & inibidores
5.
Chemistry ; 26(48): 11048-11059, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32628283

RESUMO

Efforts are made to perform an early and accurate detection of hepatocellular carcinoma (HCC) by simultaneous exploiting multiple clinically non-invasive imaging modalities. Original nanostructures derived from the combination of different inorganic domains can be used as efficient contrast agents in multimodal imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) and Au nanoparticles (NPs) possess well-established contrasting features in magnetic resonance imaging (MRI) and X-ray computed tomography (CT), respectively. HCC can be targeted by using specific carbohydrates able to recognize asialoglycoprotein receptor 1 (ASGPR1) overexpressed in hepatocytes. Here, two different thiocarbohydrate ligands were purposely designed and alternatively conjugated to the surface of Au-speckled silica-coated SPIONs NPs, to achieve two original nanostructures that could be potentially used for dual mode targeted imaging of HCC. The results indicated that the two thiocarbohydrate decorated nanostructures possess convenient plasmonic/superparamagnetic properties, well-controlled size and morphology and good selectivity for targeting ASGPR1 receptor.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Carboidratos/química , Carcinoma Hepatocelular/diagnóstico por imagem , Ouro , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Metálicas/química , Dióxido de Silício , Compostos de Sulfidrila/química , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética
6.
J Pept Sci ; 25(5): e3166, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30884005

RESUMO

Integrins are heterodimeric cell-surface proteins that play important roles during developmental and pathological processes. Diverse human pathologies involve integrin adhesion including thrombotic diseases, inflammation, tumour progression, fibrosis, and infectious diseases. Although in the past decade, novel integrin-inhibitor drugs have been developed for integrin-based medical applications, the structural determinants modulating integrin-ligands recognition mechanisms are still poorly understood, reducing the number of integrin subtype exclusive antagonists. In this scenario, we have very recently showed, by means of chemical and biological assays, that a chimeric peptide (named RGDechi), containing a cyclic RGD motif linked to an echistatin C-terminal fragment, is able to interact with the components of integrin family with variable affinities, the highest for αv ß3. Here, in order to understand the mechanistic details driving the molecular recognition mechanism of αv ß3 by RGDechi, we have performed a detailed structural and dynamics characterization of the free peptide by natural abundance nuclear magnetic resonance (NMR) spectroscopy. Our data indicate that RGDechi presents in solution an heterogeneous conformational ensemble characterized by a more constrained and rigid pentacyclic ring and a largely unstructured acyclic region. Moreover, we propose that the molecular recognition of αv ß3 integrin by RGDechi occurs by a combination of conformational selection and induced fit mechanisms. Finally, our study indicates that a detailed NMR characterization, by means of natural abundance 15 N and 13 C, of a mostly unstructured bioactive peptide may provide the molecular basis to get essential structural insights into the binding mechanism to the biological partner.


Assuntos
Oligopeptídeos/química , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Temperatura
7.
Cancers (Basel) ; 11(2)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682838

RESUMO

The mesenchymal sub-type of triple negative breast cancer (MES-TNBC) has a highly aggressive behavior and worse prognosis, due to its invasive and stem-like features, that correlate with metastatic dissemination and resistance to therapies. Furthermore, MES-TNBC is characterized by the expression of molecular markers related to the epithelial-to-mesenchymal transition (EMT) program and cancer stem cells (CSCs). The altered expression of αvß3 integrin has been well established as a driver of cancer progression, stemness, and metastasis. Here, we showed that the high levels of αvß3 are associated with MES-TNBC and therefore exploited the possibility to target this integrin to reduce the aggressiveness of this carcinoma. To this aim, MES-TNBC cells were treated with a novel peptide, named ψRGDechi, that we recently developed and characterized for its ability to selectively bind and inhibit αvß3 integrin. Notably, ψRGDechi was able to hamper adhesion, migration, and invasion of MES-TNBC cells, as well as the capability of these cells to form vascular-like structures and mammospheres. In addition, this peptide reversed EMT program inhibits mesenchymal markers. These findings show that targeting αvß3 integrin by ψRGDechi, it is possible to inhibit some of the malignant properties of MES-TNBC phenotype.

8.
J Med Chem ; 61(21): 9596-9610, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30278131

RESUMO

New integrin-selective molecules suitable for therapeutic or imaging purposes are currently of interest in development of effective personalized medical platforms. RGDechi is a bifunctional peptide selective for integrin αvß3. Herein, RGDechi and three truncated derivatives functionalized with a cysteine (1-4) were synthesized and labeled with the [99mTc][Tc(N)PNP43]-synthon ([PNP43 = (CH3)2P(CH2)2N(C2H4OCH3)(CH2)2P(CH3)2]) (99mTc1-4) as a basis for selective integrin recognition. The pharmacological parameters of all radiolabeled peptides were assessed along with the pharmacokinetic profiles of the most promising 99mTc1 and 99mTc2 compounds both on healthy and melanoma-bearing mice. Their metabolism and metabolite identification are also reported. 99mTc1-2 are able to discriminate between endogenously expressed integrins αvß3 and αvß5 and possess favorable pharmacokinetics characterized by low liver uptake and rapid elimination from nontarget tissues resulting in positive target-to-nontarget ratios. Results are encouraging; the presented construct can be considered the starting point for the development of agents for the selective detection of αvß3 expression by SPECT.


Assuntos
Integrina alfaVbeta3/metabolismo , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Compostos de Organotecnécio/química , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Desenho de Fármacos , Humanos , Marcação por Isótopo , Camundongos , Modelos Moleculares , Conformação Molecular , Sondas Moleculares/síntese química , Sondas Moleculares/farmacocinética , Oligopeptídeos/síntese química , Oligopeptídeos/farmacocinética , Relação Estrutura-Atividade , Distribuição Tecidual
9.
J Med Chem ; 60(23): 9874-9884, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29144748

RESUMO

Herein, we report the synthesis and biological characterization of the new peptide ψRGDechi as the first step toward novel-targeted theranostics in melanoma. This pseudopeptide is designed from our previously reported RGDechi peptide, known to bind selectively αvß3 integrin, and differs for a modified amide bond at the main protease cleavage site. This chemical modification drastically reduces the enzymatic degradation in serum, compared to its parental peptide, resulting in an overall magnification of the biological activity on a highly expressing αvß3 human metastatic melanoma cell line. Selective inhibition of cell adhesion, wound healing, and invasion are demonstrated; near-infrared fluorescent ψRGDechi derivative is able to detect αvß3 integrin in human melanoma xenografts in a selective fashion. More, molecular docking studies confirm that ψRGDechi recognizes the receptor similarly to RGDechi. All these findings pave the way for the future employment of this novel peptide as promising targeting probe and therapeutic agent in melanoma disease.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Integrina alfaVbeta3/metabolismo , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo , Camundongos Nus , Simulação de Acoplamento Molecular , Imagem Óptica/métodos , Cicatrização/efeitos dos fármacos
10.
Biochim Biophys Acta Gen Subj ; 1861(9): 2155-2164, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28625421

RESUMO

BACKGROUND: The peptide VLL-28, identified in the sequence of an archaeal protein, the transcription factor Stf76 from Sulfolobus islandicus, was previously identified and characterized as an antimicrobial peptide, possessing a broad-spectrum antibacterial activity. METHODS: Through a combined approach of NMR and Circular Dichroism spectroscopy, Dynamic Light Scattering, confocal microscopy and cell viability assays, the interaction of VLL-28 with the membranes of both parental and malignant cell lines has been characterized and peptide mechanism of action has been studied. RESULTS: It is here demonstrated that VLL-28 selectively exerts cytotoxic activity against murine and human tumor cells. By means of structural methodologies, VLL-28 interaction with the membranes has been proven and the binding residues have been identified. Confocal microscopy data show that VLL-28 is internalized only into tumor cells. Finally, it is shown that cell death is mainly caused by a time-dependent activation of apoptotic pathways. CONCLUSIONS: VLL-28, deriving from the archaeal kingdom, is here found to be endowed with selective cytotoxic activity towards both murine and human cancer cells and consequently can be classified as an ACP. GENERAL SIGNIFICANCE: VLL-28 represents the first ACP identified in an archaeal microorganism, exerting a trans-kingdom activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Sulfolobus/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Antineoplásicos/química , Células 3T3 BALB , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Humanos , Camundongos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
11.
J Inorg Biochem ; 161: 91-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27238756

RESUMO

The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties.


Assuntos
Agrobacterium tumefaciens/química , Proteínas de Bactérias/química , Dedos de Zinco , Zinco/química , Domínios Proteicos
12.
Chemistry ; 22(2): 681-93, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26548575

RESUMO

The critical role of integrins in tumor progression and metastasis has stimulated intense efforts to identify pharmacological agents that can modulate integrin function. In recent years, αv ß3 and αv ß5 integrin antagonists were demonstrated to be effective in blocking tumor progression. RGDechi-hCit, a chimeric peptide containing a cyclic RGD motif linked to an echistatin C-terminal fragment, is able to recognize selectively αv ß3 integrin both in vitro and in vivo. High-resolution molecular details of the selective αv ß3 recognition of the peptide are certainly required, nonetheless RGDechi-hCit internalization limited the use of classical in cell NMR experiments. To overcome such limitations, we used WM266 isolated cellular membranes to accomplish a detailed NMR interaction study that, combined with a computational analysis, provides significant structural insights into αv ß3 molecular recognition by RGDechi-hCit. Remarkably, on the basis of the identified molecular determinants, we design a RGDechi-hCit mutant that is selective for αv ß5 integrin.


Assuntos
Membrana Celular/química , Integrina alfaVbeta3/química , Espectroscopia de Ressonância Magnética , Oligopeptídeos/química , Peptídeos/química , Receptores de Vitronectina/química , Membrana Celular/metabolismo , Computadores Moleculares , Integrina alfaVbeta3/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Peptídeos/metabolismo , Receptores de Vitronectina/metabolismo
13.
PLoS One ; 10(4): e0121149, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25848797

RESUMO

Cullin3 (Cul3), a key factor of protein ubiquitination, is able to interact with dozens of different proteins containing a BTB (Bric-a-brac, Tramtrack and Broad Complex) domain. We here targeted the Cul3-BTB interface by using the intriguing approach of stabilizing the α-helical conformation of Cul3-based peptides through the "stapling" with a hydrocarbon cross-linker. In particular, by combining theoretical and experimental techniques, we designed and characterized stapled Cul3-based peptides embedding the helix 2 of the protein (residues 49-68). Intriguingly, CD and NMR experiments demonstrate that these stapled peptides were able to adopt the helical structure that the fragment assumes in the parent protein. We also show that some of these peptides were able to bind to the BTB of the tetrameric KCTD11, a substrate adaptor involved in HDAC1 degradation, with high affinity (~ 300-600 nM). Cul3-derived staple peptides are also able to bind the BTB of the pentameric KCTD5. Interestingly, the affinity of these peptides is of the same order of magnitude of that reported for the interaction of full-length Cul3 with some BTB containing proteins. Moreover, present data indicate that stapling endows these peptides with an increased serum stability. Altogether, these findings indicate that the designed stapled peptides can efficiently mimic protein-protein interactions and are potentially able to modulate fundamental biological processes involving Cul3.


Assuntos
Proteínas Culina/química , Peptídeos/química , Proteínas Culina/metabolismo , Humanos , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
PLoS One ; 9(9): e106441, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25248000

RESUMO

αvß3 integrin is an important tumor marker widely expressed on the surface of cancer cells. Recently, we reported some biological features of RGDechi-hCit, an αvß3 selective peptide antagonist. In the present work, we mainly investigated the pro-apoptotic activity of the molecule and its ability to penetrate the membrane of WM266 cells, human malignant melanoma cells expressing high levels of αvß3 integrin. For the first time we demonstrated the pro-apoptotic effect and the ability of RGDechi-hCit to enter into cell overexpressing αvß3 integrin mainly by clathrin- and caveolin-mediated endocytosis. Furthermore, we deepened and confirmed the selectivity, anti-adhesion, and anti-proliferative features of the peptide. Altogether these experiments give insight into the biological behavior of RGDechi-hCit and have important implications for the employment of the peptide as a new selective carrier to deliver drugs into the cell and as a therapeutic and diagnostic tool for metastatic melanoma. Moreover, since the peptide shows a pro-apoptotic effect, a great perspective could be the development of a new class of selective systems containing RGDechi-hCit and pro-apoptotic molecules or other therapeutic agents to attain a synergic action.


Assuntos
Inibidores da Angiogênese/farmacologia , Integrina alfaVbeta3/antagonistas & inibidores , Melanoma/patologia , Peptídeos/farmacologia , Inibidores da Angiogênese/síntese química , Apoptose , Caveolinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clatrina/metabolismo , Portadores de Fármacos/farmacologia , Portadores de Fármacos/uso terapêutico , Células HeLa , Humanos , Melanoma/metabolismo , Metástase Neoplásica , Peptídeos/síntese química
15.
Metallomics ; 6(1): 96-104, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24287553

RESUMO

Given the similar chemical properties of zinc and cadmium, zinc finger domains have been often proposed as mediators of the toxic and carcinogenic effects exerted by this xenobiotic metal. The effects of zinc replacement by cadmium in different eukaryotic zinc fingers have been reported. In the present work, to evaluate the effects of such substitution in the prokaryotic zinc finger, we report a detailed study of its functional and structural consequences on the Ros DNA binding domain (Ros87). We show that this protein, which bears important structural differences with respect to the eukaryotic domains, appears to structurally tolerate the zinc to cadmium substitution and the presence of cadmium does not affect the DNA binding activity of the protein. Moreover, we show for the first time how zinc to cadmium replacement can also take place in a cellular context. Our findings both complement and extend previous results obtained for different eukaryotic zinc fingers, suggesting that metal substitution in zinc fingers may be of relevance to the toxicity and/or carcinogenicity mechanisms of this metal.


Assuntos
Proteínas de Bactérias/química , Cádmio/química , Proteínas de Ligação a DNA/química , Dedos de Zinco , Zinco/química , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Ligação Competitiva , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Espectroscopia de Ressonância Magnética , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oligonucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica
16.
Anticancer Res ; 33(3): 871-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23482756

RESUMO

BACKGROUND: In malignant melanoma (MM), overexpression of αvß3 integrin is linked to a more metastatic phenotype. Development of anti-αvß3 agents able to counteract melanoma progression would be helpful for disease treatment. A new selective ligand of αvß3, RGDechi-hCit, has anti-angiogenic properties against endothelial cells in animal angiogenesis models. The aim of this study was to evaluate the in vitro effects of the RGDechi-hCit peptide on MM cell lines. MATERIALS AND METHODS: Cytofluorimetric analysis characterized the cell surface expression of αvß3 integrin on seven MM cell lines: A375, WM266-4, SK-Mel-28, Sbcl2, LB24Dagi, PR-Mel and PNP-Mel. Cell proliferation, adhesion, and migration assays were carried out using the αvß3-antagonist RGDechi-hCit. RESULTS: Proliferation was not significantly inhibited by RGDechi-hCit, although striking morphological changes were detected in MM cell lines highly expressing αvß3. Conversely, assays on fibronectin-coated plates showed a significant RGDechi-hCit dose-dependent inhibitory effect on both adhesion and migration. CONCLUSION: The data demonstrate anti-adhesion and anti-migration, but not antiproliferative, activities of RGDechi-hCit against MM cells.


Assuntos
Inibidores da Angiogênese/farmacologia , Integrina alfaVbeta3/antagonistas & inibidores , Melanoma/tratamento farmacológico , Peptídeos/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Integrina alfaVbeta3/análise , Melanoma/patologia , Melanoma/secundário
17.
Bioconjug Chem ; 23(3): 340-9, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22375916

RESUMO

Gold nanoparticles were obtained by reduction of a tetrachloroaurate aqueous solution in the presence of a RGD-(GC)(2) peptide as stabilizer. As comparison, the behavior of the (GC)(2) peptide has been studied. The (GC)(2) and RGD-(GC)(2) peptides were prepared ad hoc by Fmoc synthesis. The colloidal systems have been characterized by UV-visible, TGA, ATR-FTIR, mono and bidimensional NMR techniques, confocal and transmission (TEM) microscopy, ζ-potential, and light scattering measurements. The efficient cellular uptake of Au-RGD-(GC)(2) and Au-(GC)(2) stabilized gold nanoparticles into U87 cells (human glioblastoma cells) were investigated by confocal microscopy and compared with the behavior of (GC)(2) capped gold nanoparticles. A quantitative determination of the nanoparticles taken up has been carried out by measuring the pixel brightness of the images, a measure that highlighted the importance of the RGD termination of the peptide. Insight in the cellular uptake mechanism was investigated by TEM microscopy. Various important evidences indicated the selective uptake of RGD-(GC)(2) gold nanoparticles into the nucleus.


Assuntos
Ouro/química , Integrinas/química , Nanopartículas Metálicas , Oligopeptídeos/química , Peptídeos/química , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
18.
Biotechnol Adv ; 30(1): 223-32, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21620945

RESUMO

Peptidomimetics hold a great promise as therapeutic agents for neurodegenerative disorders. We previously described a Nerve Growth Factor (NGF)-like peptide, now named BB14, which was found to act as a strong TrkA agonist and to be effective in the sciatic nerve injury model of neuropathic pain. In this report we present the effects of BB14 in reducing reactive astrocytosis and reverting neuroplastic changes of the glutamate/GABAergic circuitry in the lumbar spinal cord following spared nerve injury (SNI) of the sciatic nerve. Immunohistochemical analysis of spinal cord sections revealed that SNI was associated with increased microglial (Iba1) and astrocytic (GFAP) responses, indicative of reactive gliosis. These changes were paralleled by (i) decreased glial aminoacid transporters (GLT1 and GlyT1) and increased levels of (ii) neuronal glutamate transporter EAAC1, (iii) neuronal vesicular GABA transporter (vGAT) and (iv) the GABAergic neuron marker GAD65/67. A remarkable increase of the Glutamate/GABA ratio and the reduction of glutathione (GSH) levels were also indicative of modifications of glial function in neuroprotection. All these molecular changes were found to be linked to an alteration of endogenous NGF metabolism, as demonstrated by decreased levels of mature NGF, increase of proNGF and increased activity of NGF-degrading methallo-proteinases (MMPs). Biochemical alterations and SNI-related neuropathic behavior, characterized by allodynia and hyperalgesia, were reversed by 7-days i.t. administration of the NGF-like peptide BB14, as well as by increasing endogenous NGF levels by i.t. infusion of GM6001, a MMPs inhibitor. All together, while confirming the correlation between reactive astrogliosis and perturbation of synaptic circuitry in the SNI model of peripheral nerve injury, these data strongly support the beneficial effect of BB14 in reducing reactive astrogliosis and restoring synaptic homeostasis under pathological conditions linked to alteration of NGF availability and signaling, thereby suggesting a potential role of BB14 as a therapeutic agent.


Assuntos
Gliose/tratamento farmacológico , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico , Sinapses/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Glicina/metabolismo , Imuno-Histoquímica , Masculino , Fator de Crescimento Neural/uso terapêutico , Ratos , Ratos Sprague-Dawley , Medula Espinal/química , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Sinapses/química , Sinapses/metabolismo
19.
J Am Chem Soc ; 134(3): 1715-23, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22191432

RESUMO

Malfunctions in transcriptional regulation are associated with a number of critical human diseases. As a result, there is considerable interest in designing artificial transcription activators (ATAs) that specifically control genes linked to human diseases. Like native transcriptional activator proteins, an ATA must minimally contain a DNA-binding domain (DBD) and a transactivation domain (TAD) and, although there are several reliable methods for designing artificial DBDs, designing artificial TADs has proven difficult. In this manuscript, we present a structure-based strategy for designing short peptides containing natural amino acids that function as artificial TADs. Using a segment of the TAD of p53 as the scaffolding, modifications are introduced to increase the helical propensity of the peptides. The most active artificial TAD, termed E-Cap-(LL), is a 13-mer peptide that contains four key residues from p53, an N-capping motif and a dileucine hydrophobic bridge. In vitro analysis demonstrates that E-Cap-(LL) interacts with several known p53 target proteins, while in vivo studies in a yeast model system show that it is a 20-fold more potent transcriptional activator than the native p53-13 peptide. These results demonstrate that structure-based design represents a promising approach for developing artificial TADs that can be combined with artificial DBDs to create potent and specific ATAs.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Humanos , Leucina/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/síntese química , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/síntese química , Leveduras/genética
20.
Biopolymers ; 95(11): 801-10, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21618209

RESUMO

Among heavy metals, whose toxicity cause a steadily increasing of environmental pollution, cadmium is of special concern due to its relatively high mobility in soils and potential toxicity at low concentrations. Given their ubiquitous role, zinc fingers domains have been proposed as mediators for the toxic and carcinogenic effects exerted by xenobiotic metals. To verify the structural effects of zinc replacement by cadmium in zinc fingers, we have determined the high resolution structure of the single Cys2 His2 zinc finger of the Arabidopsis thaliana SUPERMAN protein (SUP37) complexed to the cadmium ion by means of UV-vis and NMR techniques. SUP37 is able to bind Cd(II), though with a dissociation constant higher than that measured for Zn(II). Cd-SUP37 retains the ßßα fold but experiences a global structural rearrangement affecting both the relative orientation of the secondary structure elements and the position of side chains involved in DNA recognition: among them Ser17 side chain, which we show to be essential for DNA binding, experiences the largest displacement.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Cádmio/química , Cisteína/química , DNA de Plantas/química , Histidina/química , Fatores de Transcrição/química , Dedos de Zinco , Zinco/química , Arabidopsis/genética , Pareamento de Bases , Sequência de Bases , Primers do DNA , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA