Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626772

RESUMO

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Assuntos
Demência Frontotemporal , Neurônios , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Animais , Proteínas tau/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/patologia , Mutação/genética
2.
Cells ; 11(14)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35883684

RESUMO

The transplantation of pluripotent stem cell (PSC)-derived liver organoids has been studied to solve the current donor shortage. However, the differentiation of unintended cell populations, difficulty in generating multi-lineage organoids, and tumorigenicity of PSC-derived organoids are challenges. However, direct conversion technology has allowed for the generation lineage-restricted induced stem cells from somatic cells bypassing the pluripotent state, thereby eliminating tumorigenic risks. Here, liver assembloids (iHEAs) were generated by integrating induced endothelial cells (iECs) into the liver organoids (iHLOs) generated with induced hepatic stem cells (iHepSCs). Liver assembloids showed enhanced functional maturity compared to iHLOs in vitro and improved therapeutic effects on cholestatic liver fibrosis animals in vivo. Mechanistically, FN1 expressed from iECs led to the upregulation of Itgα5/ß1 and Hnf4α in iHEAs and were correlated to the decreased expression of genes related to hepatic stellate cell activation such as Lox and Spp1 in the cholestatic liver fibrosis animals. In conclusion, our study demonstrates the possibility of generating transplantable iHEAs with directly converted cells, and our results evidence that integrating iECs allows iHEAs to have enhanced hepatic maturation compared to iHLOs.


Assuntos
Colestase , Células Endoteliais , Animais , Colestase/metabolismo , Cirrose Hepática/metabolismo , Organoides/metabolismo
3.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32571478

RESUMO

Generation of autologous human motor neurons holds great promise for cell replacement therapy to treat spinal cord injury (SCI). Direct conversion allows generation of target cells from somatic cells, however, current protocols are not practicable for therapeutic purposes since converted cells are post-mitotic that are not scalable. Therefore, therapeutic effects of directly converted neurons have not been elucidated yet. Here, we show that human fibroblasts can be converted into induced motor neurons (iMNs) by sequentially inducing POU5F1(OCT4) and LHX3. Our strategy enables scalable production of pure iMNs because of the transient acquisition of proliferative iMN-intermediate cell stage which is distinct from neural progenitors. iMNs exhibited hallmarks of spinal motor neurons including transcriptional profiles, electrophysiological property, synaptic activity, and neuromuscular junction formation. Remarkably, transplantation of iMNs showed therapeutic effects, promoting locomotor functional recovery in rodent SCI model. Together, our advanced strategy will provide tools to acquire sufficient human iMNs that may represent a promising cell source for personalized cell therapy.


Assuntos
Fibroblastos/fisiologia , Regulação da Expressão Gênica , Proteínas com Homeodomínio LIM/genética , Locomoção/fisiologia , Neurônios Motores/transplante , Fator 3 de Transcrição de Octâmero/genética , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/terapia , Fatores de Transcrição/genética , Animais , Transplante de Células , Modelos Animais de Doenças , Feminino , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Camundongos , Camundongos Nus , Neurônios Motores/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Transcrição/metabolismo
4.
Stem Cells Dev ; 28(23): 1540-1551, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31595840

RESUMO

Red blood cell (RBC) differentiation from human induced pluripotent stem cells (hiPSCs) offers great potential for developmental studies and innovative therapies. However, ex vivo erythropoiesis from hiPSCs is currently limited by low efficiency and unphysiological conditions of common culture systems. Especially, the absence of a physiological niche may impair cell growth and lineage-specific differentiation. We here describe a simplified, xeno- and feeder-free culture system for prolonged RBC generation that uses low numbers of supporting cytokines [stem cell factor (SCF), erythropoietin (EPO), and interleukin 3 (IL-3)] and is based on the intermediate development of a "hematopoietic cell forming complex (HCFC)." From this HCFC, CD43+ hematopoietic cells (purity >95%) were continuously released into the supernatant and could be collected repeatedly over a period of 6 weeks for further erythroid differentiation. The released cells were mainly CD34+/CD45+ progenitors with high erythroid colony-forming potential and CD36+ erythroid precursors. A total of 1.5 × 107 cells could be harvested from the supernatant of one six-well plate, showing 100- to 1000-fold amplification during subsequent homogeneous differentiation into GPA+ erythroid cells. Mean enucleation rates near 40% (up to 60%) further confirmed the potency of the system. These benefits may be explained by the generation of a niche within the HCFC that mimics the spatiotemporal signaling of the physiological microenvironment in which erythropoiesis occurs. Compared to other protocols, this method provides lower complexity, less cytokine and medium consumption, higher cellular output, and better enucleation. In addition, slight modifications in cytokine addition shift the system toward continuous generation of granulocytes and macrophages.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Células Eritroides/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Antígenos CD36/genética , Linhagem da Célula/genética , Microambiente Celular/genética , Citocinas/genética , Eritrócitos/citologia , Eritropoese/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Leucossialina/genética
5.
PLoS One ; 14(8): e0221085, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404112

RESUMO

Direct conversion from fibroblasts to generate hepatocyte like-cells (iHeps) bypassing the pluripotent state has been described in previous reports as an attractive method acquiring hepatocytes for cell-based therapy. The limited proliferation of iHeps, however, has hampered it uses in cell-based therapy. Since hepatic stem cells (HepSCs) possess self-renewal and bipotency with the capacity to differentiate into both hepatocytes and cholangiocytes, they have therapeutic potential for treating liver disease. Here, we investigated the therapeutic effects of induced HepSCs (iHepSCs) on a carbon tetrachloride (CCl4)-induced liver fibrosis model. We demonstrate that Oct4 and Hnf4a are sufficient to convert fibroblasts into expandable iHepSCs. Hepatocyte-like cells derived from iHepSCs (iHepSC-HEPs) exhibit the typical morphology of hepatocytes and hepatic functions, including glycogen storage, low-density lipoprotein (LDL) uptake, Indocyanine green (ICG) detoxification, drug metabolism, urea production, and albumin secretion. iHepSCs-derived cholangiocyte-like cells (iHepSC-CLCs) expressed cholangiocyte-specific markers and formed cysts and tubule-like structures with apical-basal polarity and secretory function in three-dimensional culture condition. Furthermore, iHepSCs showed anti-inflammatory and anti-fibrotic effects in CCl4-induced liver fibrosis. This study demonstrates that Oct4 and Hnf4α-induced HepSCs show typical hepatic and biliary functionality in vitro. It also presents the therapeutic effect of iHepSCs in liver fibrosis. Therefore, directly converting iHepSCs from somatic cells may facilitate the development of patient-specific cell-based therapy for chronic liver damage.


Assuntos
Intoxicação por Tetracloreto de Carbono , Fator 4 Nuclear de Hepatócito , Células-Tronco Pluripotentes Induzidas , Cirrose Hepática , Fígado , Lesão Pulmonar , Fator 3 de Transcrição de Octâmero , Transplante de Células-Tronco , Animais , Intoxicação por Tetracloreto de Carbono/genética , Intoxicação por Tetracloreto de Carbono/metabolismo , Intoxicação por Tetracloreto de Carbono/terapia , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/terapia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
6.
J Funct Biomater ; 10(3)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315182

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease associated with loss or dysfunction of dopaminergic neurons located in the substantia nigra (SN), and there is no cure available. An emerging new approach for treatment is to transplant human induced dopaminergic neurons directly into the denervated striatal brain target region. Unfortunately, neurons grafted into the substantia nigra are unable to grow axons into the striatum and thus do not allow recovery of the original connectivity. Towards overcoming this general limitation in guided neuronal regeneration, we develop here magnetic nanoparticles functionalized with proteins involved in the regulation of axonal growth. We show covalent binding of constitutive active human rat sarcoma (RAS) proteins or RAS guanine nucleotide exchange factor catalytic domain of son of sevenless (SOS) by fluorescence correlation spectroscopy and multiangle light scattering as well as the characterization of exchange factor activity. Human dopaminergic neurons were differentiated from neural precursor cells and characterized by electrophysiological and immune histochemical methods. Furthermore, we demonstrate magnetic translocation of cytoplasmic γ-Fe2O3@SiO2 core-shell nanoparticles into the neurite extensions of induced human neurons. Altogether, we developed tools towards remote control of directed neurite growth in human dopaminergic neurons. These results may have relevance for future therapeutic approaches of cell replacement therapy in Parkinson's disease.

7.
Cells ; 8(6)2019 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159500

RESUMO

The basic helix-loop-helix (bHLH) transcription factor Math6 (Atonal homolog 8; Atoh8) plays a crucial role in a number of cellular processes during embryonic development, iron metabolism and tumorigenesis. We report here on its involvement in cellular reprogramming from fibroblasts to induced pluripotent stem cells, in the maintenance of pluripotency and in early fate decisions during murine development. Loss of Math6 disrupts mesenchymal-to-epithelial transition during reprogramming and primes pluripotent stem cells towards the mesendodermal fate. Math6 can thus be considered a regulator of reprogramming and pluripotent stem cell fate. Additionally, our results demonstrate the involvement of Math6 in SMAD-dependent TGF beta signalling. We furthermore monitor the presence of the Math6 protein during these developmental processes using a newly generated Math6Flag-tag mouse. Taken together, our results suggest that Math6 counteracts TGF beta signalling and, by this, affects the initiating step of cellular reprogramming, as well as the maintenance of pluripotency and early differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Reprogramação Celular , Células-Tronco Pluripotentes/citologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo
8.
Transfus Med Hemother ; 44(3): 143-150, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28626365

RESUMO

BACKGROUND: The ex vivo generation of human hematopoietic stem cells (HSCs) with long-term repopulating capacity and multi-lineage differentiation potential represents the holy grail of hematopoiesis research. In principle, human induced pluripotent stem cells (hiPSCs) provide the tool for both studying molecular mechanisms of hematopoietic development and the ex vivo production of 'true' HSCs for transplantation purposes and lineage-specific cells, e.g. red blood cells, for transfusion purposes. CD43-expressing cells have been reported as the first hematopoietic cells during development, but whether or not these possess multilineage differentiation and long-term engraftment potential is incompletely understood. METHODS: We performed ex vivo generation of hematopoietic cells from hiPSCs using an embryoid body(EB)-based, xeno-product-free differentiation protocol. We investigated the multilineage differentiation potential of different FACS-sorted CD43-expressing cell subsets by colony-forming assays in semisolid media. Further, erythroid differentiation was investigated in more detail using established protocols. RESULTS: By using CD43, we were able to measure hematopoietic induction efficiency during hiPSC-derived EB differentiation. Further, we determined CD43+ cells as the cell population of origin for in vitro erythropoiesis. Furthermore, colony formation demonstrates that the multipotent hematopoietic stem and progenitor cell fraction is particulary enriched in the CD43hi CD45+ population.

9.
Mol Ther Nucleic Acids ; 7: 101-115, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28624186

RESUMO

Pompe disease is a metabolic myopathy caused by deficiency of the acid α-glucosidase (GAA) enzyme and results in progressive wasting of skeletal muscle cells. The c.-32-13T>G (IVS1) GAA variant promotes exon 2 skipping during pre-mRNA splicing and is the most common variant for the childhood/adult disease form. We previously identified antisense oligonucleotides (AONs) that promoted GAA exon 2 inclusion in patient-derived fibroblasts. It was unknown how these AONs would affect GAA splicing in skeletal muscle cells. To test this, we expanded induced pluripotent stem cell (iPSC)-derived myogenic progenitors and differentiated these to multinucleated myotubes. AONs restored splicing in myotubes to a similar extent as in fibroblasts, suggesting that they act by modulating the action of shared splicing regulators. AONs targeted the putative polypyrimidine tract of a cryptic splice acceptor site that was part of a pseudo exon in GAA intron 1. Blocking of the cryptic splice donor of the pseudo exon with AONs likewise promoted GAA exon 2 inclusion. The simultaneous blocking of the cryptic acceptor and cryptic donor sites restored the majority of canonical splicing and alleviated GAA enzyme deficiency. These results highlight the relevance of cryptic splicing in human disease and its potential as therapeutic target for splicing modulation using AONs.

10.
Stem Cell Res ; 16(3): 776-81, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153350

RESUMO

Reprogramming technology enables the production of neural progenitor cells (NPCs) from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs) differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs) and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.


Assuntos
Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Transcriptoma , Animais , Encéfalo/patologia , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Análise por Conglomerados , Fibroblastos/citologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
EMBO J ; 34(23): 2971-83, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26497893

RESUMO

The generation of patient-specific oligodendrocyte progenitor cells (OPCs) holds great potential as an expandable cell source for cell replacement therapy as well as drug screening in spinal cord injury or demyelinating diseases. Here, we demonstrate that induced OPCs (iOPCs) can be directly derived from adult mouse fibroblasts by Oct4-mediated direct reprogramming, using anchorage-independent growth to ensure high purity. Homogeneous iOPCs exhibit typical small-bipolar morphology, maintain their self-renewal capacity and OPC marker expression for more than 31 passages, share high similarity in the global gene expression profile to wild-type OPCs, and give rise to mature oligodendrocytes and astrocytes in vitro and in vivo. Notably, transplanted iOPCs contribute to functional recovery in a spinal cord injury (SCI) model without tumor formation. This study provides a simple strategy to generate functional self-renewing iOPCs and yields insights for the in-depth study of demyelination and regenerative medicine.


Assuntos
Fator 3 de Transcrição de Octâmero/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Células-Tronco/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/citologia , Imuno-Histoquímica , Cariótipo , Masculino , Camundongos , Camundongos SCID , Fator 3 de Transcrição de Octâmero/genética , Oligodendroglia/citologia , Ratos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/genética , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/fisiologia
12.
Haematologica ; 100(1): 32-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326431

RESUMO

Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential.


Assuntos
Diferenciação Celular , Células Eritroides/citologia , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Biomarcadores/metabolismo , Metilação de DNA , Epigenômica , Células Eritroides/metabolismo , Sangue Fetal/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Sci Rep ; 4: 7477, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25515008

RESUMO

Several mouse pluripotent stem cell types have been established either from mouse blastocysts and epiblasts. Among these, embryonic stem cells (ESCs) are considered to represent a "naïve", epiblast stem cells (EpiSCs) a "primed" pluripotent state. Although EpiSCs form derivatives of all three germ layers during in vitro differentiation, they rarely incorporate into the inner cell mass of blastocysts and rarely contribute to chimera formation following blastocyst injection. Here we successfully established homogeneous population of EpiSC lines with efficient chimera-forming capability using a medium containing fibroblast growth factor (FGF)-4. The expression levels of Rex1 and Nanog was very low although Oct4 level is comparable to ESCs. EpiSCs also expressed higher levels of epiblast markers, such as Cer1, Eomes, Fgf5, Sox17, and T, and further showed complete DNA methylation of Stella and Dppa5 promoters. However, the EpiSCs were clustered separately from E3 and T9 EpiSC lines and showed a completely different global gene expression pattern to ESCs. Furthermore, the EpiSCs were able to differentiate into all three germ layers in vitro and efficiently formed teratomas and chimeric embryos (21.4%) without germ-line contribution.


Assuntos
Fator 4 de Crescimento de Fibroblastos/genética , Camadas Germinativas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Blastocisto/citologia , Diferenciação Celular/genética , Células Cultivadas , Quimera/genética , Quimera/fisiologia , Metilação de DNA/genética , Células-Tronco Embrionárias/citologia , Feminino , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Homeobox Nanog , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética
14.
Cell Rep ; 8(6): 1697-1703, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25220454

RESUMO

The differentiation capability of induced pluripotent stem cells (iPSCs) toward certain cell types for disease modeling and drug screening assays might be influenced by their somatic cell of origin. Here, we have compared the neural induction of human iPSCs generated from fetal neural stem cells (fNSCs), dermal fibroblasts, or cord blood CD34(+) hematopoietic progenitor cells. Neural progenitor cells (NPCs) and neurons could be generated at similar efficiencies from all iPSCs. Transcriptomics analysis of the whole genome and of neural genes revealed a separation of neuroectoderm-derived iPSC-NPCs from mesoderm-derived iPSC-NPCs. Furthermore, we found genes that were similarly expressed in fNSCs and neuroectoderm, but not in mesoderm-derived iPSC-NPCs. Notably, these neural signatures were retained after transplantation into the cortex of mice and paralleled with increased survival of neuroectoderm-derived cells in vivo. These results indicate distinct origin-dependent neural cell identities in differentiated human iPSCs both in vitro and in vivo.


Assuntos
Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Células Cultivadas , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Feto/citologia , Fibroblastos/citologia , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos NOD , Microscopia Confocal , Placa Neural/citologia
15.
Stem Cell Res ; 13(2): 300-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25173648

RESUMO

Though expression of the homeobox transcription factor Nanog is generally restricted to pluripotent cells and early germ cells, many contradictory reports about Nanog's involvement in tumorigenesis exist. To address this, a modified Tet-On system was utilized to generate Nanog-inducible mice. Following prolonged Nanog expression, phenotypic alterations were found to be restricted to the intestinal tract, leaving other major organs unaffected. Intestinal and colonic epithelium hyperplasia was observed-intestinal villi had doubled in length and hyperplastic epithelium outgrowths were seen after 7days. Increased proliferation of crypt cells and downregulation of the tumor suppressors Cdx2 and Klf4 was detected. ChIP analysis showed physical interaction of Nanog with the Cdx2 and Klf4 promoters, indicating a regulatory conservation from embryonic development. Despite downregulation of tumor suppressors and increased proliferation, ectopic Nanog expression did not lead to tumor formation. We conclude that unlike other pluripotency-related transcription factors, Nanog cannot be considered an oncogene.


Assuntos
Proliferação de Células , Colo/metabolismo , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Animais , Fator de Transcrição CDX2 , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genótipo , Proteínas de Homeodomínio/genética , Hiperplasia , Mucosa Intestinal/patologia , Intestino Delgado/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Proteína Homeobox Nanog , Fenótipo , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
Nat Commun ; 4: 1382, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23340422

RESUMO

Recent studies indicate that human-induced pluripotent stem cells contain genomic structural variations and point mutations in coding regions. However, these studies have focused on fibroblast-derived human induced pluripotent stem cells, and it is currently unknown whether the use of alternative somatic cell sources with varying reprogramming efficiencies would result in different levels of genetic alterations. Here we characterize the genomic integrity of eight human induced pluripotent stem cell lines derived from five different non-fibroblast somatic cell types. We show that protein-coding mutations are a general feature of the human induced pluripotent stem cell state and are independent of somatic cell source. Furthermore, we analyse a total of 17 point mutations found in human induced pluripotent stem cells and demonstrate that they do not generally facilitate the acquisition of pluripotency and thus are not likely to provide a selective advantage for reprogramming.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Fases de Leitura Aberta/genética , Alelos , Sequência de Bases , Linhagem Celular , Fibroblastos/citologia , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Dados de Sequência Molecular , Mutação Puntual/genética , Retroviridae , Análise de Sequência de RNA
17.
Cell Stem Cell ; 10(4): 465-72, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22445517

RESUMO

Recent studies have shown that defined sets of transcription factors can directly reprogram differentiated somatic cells to a different differentiated cell type without passing through a pluripotent state, but the restricted proliferative and lineage potential of the resulting cells limits the scope of their potential applications. Here we show that a combination of transcription factors (Brn4/Pou3f4, Sox2, Klf4, c-Myc, plus E47/Tcf3) induces mouse fibroblasts to directly acquire a neural stem cell identity-which we term as induced neural stem cells (iNSCs). Direct reprogramming of fibroblasts into iNSCs is a gradual process in which the donor transcriptional program is silenced over time. iNSCs exhibit cell morphology, gene expression, epigenetic features, differentiation potential, and self-renewing capacity, as well as in vitro and in vivo functionality similar to those of wild-type NSCs. We conclude that differentiated cells can be reprogrammed directly into specific somatic stem cell types by defined sets of specific transcription factors.


Assuntos
Desdiferenciação Celular , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/biossíntese , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Fibroblastos/citologia , Regulação da Expressão Gênica/genética , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Camundongos , Células-Tronco Neurais/citologia , Fatores de Transcrição/genética
18.
Gastroenterology ; 142(4): 907-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22245845

RESUMO

BACKGROUND & AIMS: Ectopic expression of certain transcription factors can reprogram somatic cells to a pluripotent state. Hematopoietic and muscle stem cells can be more efficiently reprogrammed than differentiated blood or muscle cells, yet similar findings have not been shown in other primary organ systems. Moreover, molecular characteristics of the cellular hierarchy of tissues that influence reprogramming capacities need to be delineated. We analyzed the effect of differentiation stage of freshly isolated, mouse liver cells on the reprogramming efficiency. METHODS: Liver progenitor cell (LPC)-enriched cell fractions were isolated from adult (6-8 wk) and fetal (embryonic day 14.5) livers of mice and reprogrammed to become induced pluripotent stem (iPS) cells. Different transcription factors were expressed in liver cells, and markers of pluripotency were examined, along with the ability of iPS cells to differentiate, in vitro and in vivo, into different germ layers. RESULTS: Fetal and adult LPCs had significantly greater reprogramming efficiency after transduction with 3 or 4 reprogramming factors. Transduction efficiency-corrected reprogramming rates of fetal LPCs were 275-fold higher, compared with unsorted fetal liver cells, when 3 reprogramming factors were transduced. The increased reprogramming efficiency of LPCs, compared with differentiated liver cells, occurred independently of proliferation rates, but was associated with endogenous expression of reprogramming factors (Klf4 and c-Myc) and BAF (Brg1/Brm associated factor)-complex members Baf155 and Brg1, which mediate epigenetic changes during reprogramming. Knockdown of BAF complex members negated the increased reprogramming efficiency of LPCs, compared with non-LPCs. CONCLUSIONS: LPCs have intrinsic, cell proliferation-independent characteristics resulting in an increased reprogramming capacity compared to differentiated liver cells.


Assuntos
Diferenciação Celular , DNA Helicases/metabolismo , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , DNA Helicases/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/embriologia , Camundongos , Proteínas Nucleares/genética , Fenótipo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Fatores de Tempo , Fatores de Transcrição/genética , Transdução Genética , Transfecção
19.
Stem Cells Dev ; 21(5): 742-56, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22128806

RESUMO

Adult human neural crest-derived stem cells (NCSCs) are of extraordinary high plasticity and promising candidates for the use in regenerative medicine. Here we describe for the first time a novel neural crest-derived stem cell population within the respiratory epithelium of human adult inferior turbinate. In contrast to superior and middle turbinates, high amounts of source material could be isolated from human inferior turbinates. Using minimally-invasive surgery methods isolation is efficient even in older patients. Within their endogenous niche, inferior turbinate stem cells (ITSCs) expressed high levels of nestin, p75(NTR), and S100. Immunoelectron microscopy using anti-p75 antibodies displayed that ITSCs are of glial origin and closely related to nonmyelinating Schwann cells. Cultivated ITSCs were positive for nestin and S100 and the neural crest markers Slug and SOX10. Whole genome microarray analysis showed pronounced differences to human ES cells in respect to pluripotency markers OCT4, SOX2, LIN28, and NANOG, whereas expression of WDR5, KLF4, and c-MYC was nearly similar. ITSCs were able to differentiate into cells with neuro-ectodermal and mesodermal phenotype. Additionally ITSCs are able to survive and perform neural crest typical chain migration in vivo when transplanted into chicken embryos. However ITSCs do not form teratomas in severe combined immunodeficient mice. Finally, we developed a separation strategy based on magnetic cell sorting of p75(NTR) positive ITSCs that formed larger neurospheres and proliferated faster than p75(NTR) negative ITSCs. Taken together our study describes a novel, readily accessible source of multipotent human NCSCs for potential cell-replacement therapy.


Assuntos
Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Células-Tronco Neurais/citologia , Conchas Nasais/citologia , Adulto , Animais , Western Blotting , Diferenciação Celular/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos SCID , Microscopia Eletrônica de Varredura , Microscopia Imunoeletrônica , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/ultraestrutura , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transplante de Células-Tronco/métodos , Transplante Heterólogo , Conchas Nasais/metabolismo
20.
PLoS Biol ; 9(7): e1001099, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21765802

RESUMO

Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH⁻/⁻ iPS cell lines, we aggregated FAH⁻/⁻-iPS cells with tetraploid embryos and obtained entirely FAH⁻/⁻-iPS cell-derived mice that were viable and exhibited the phenotype of the founding FAH⁻/⁻ mice. Then, we transduced FAH cDNA into the FAH⁻/⁻-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell-derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models.


Assuntos
Fibroblastos/efeitos dos fármacos , Teste de Complementação Genética/métodos , Terapia Genética/métodos , Vetores Genéticos/farmacologia , Hidrolases , Células-Tronco Pluripotentes Induzidas , Lentivirus , Tirosinemias , Animais , Sobrevivência Celular , Células Cultivadas , Cromossomos/química , Cicloexanonas/farmacologia , Modelos Animais de Doenças , Feminino , Feto , Fibroblastos/citologia , Humanos , Hidrolases/deficiência , Hidrolases/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Nitrobenzoatos/farmacologia , Gravidez , Regiões Promotoras Genéticas , Vírus Formadores de Foco no Baço/química , Vírus Formadores de Foco no Baço/genética , Tetraploidia , Tirosinemias/genética , Tirosinemias/metabolismo , Tirosinemias/patologia , Tirosinemias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA