Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(5): 412, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565815

RESUMO

Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.


Assuntos
Antioxidantes , Cádmio , Escherichia , Cádmio/toxicidade , Concentração de Íons de Hidrogênio , Monitoramento Ambiental , Floculação
2.
Cell Biosci ; 13(1): 221, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041189

RESUMO

BACKGROUND: Aberrant stress granules (SGs) are emerging as prime suspects in the nucleation of toxic protein aggregates. Understanding the molecular networks linked with aggregation-prone proteins (prion protein, synuclein, and tau) under stressful environments is crucial to understand pathophysiological cascades associated with these proteins. METHODS: We characterized and validated oxidative stress-induced molecular network changes of endogenous aggregation-prone proteins (prion protein, synuclein, and tau) by employing immunoprecipitation coupled with mass spectrometry analysis under basal and oxidative stress conditions. We used two different cell models (SH-SY5Y: human neuroblastoma and HeLa cell line) to induce oxidative stress using a well-known inducer (sodium arsenite) of oxidative stress. RESULTS: Overall, we identified 597 proteins as potential interaction partners. Our comparative interactome mapping provides comprehensive network reorganizations of three aggregation-prone hallmark proteins, establish novel interacting partners and their dysregulation, and validates that prion protein and synuclein localize in cytoplasmic SGs. Localization of prion protein and synuclein in TIA1-positive SGs provides an important link between SG pathobiology and aggregation-prone proteins. In addition, dysregulation (downregulation) of prion protein and exportin-5 protein, and translocation of exportin-5 into the nucleus under oxidative stress shed light on nucleocytoplasmic transport defects during the stress response. CONCLUSIONS: The current study contributes to our understanding of stress-mediated network rearrangements and posttranslational modifications of prion/prion-like proteins. Localization of prion protein and synuclein in the cytoplasmic SGs provides an important link between stress granule pathobiology and aggregation-prone proteins. In addition, our findings demonstrate nucleocytoplasmic transport defects after oxidative stress via dysregulation and nuclear accumulation of exportin-5.

3.
Fitoterapia ; 169: 105612, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454777

RESUMO

Since long, medicinal plants or herbs are being used in different traditional treatment systems as therapeutic agents to treat a variety of illnesses. Bixa orellana L., an medicinal plant (family: Bixaceae), is an Ayurvedic herb used to treat dyslipidemia, diarrhoea, and hepatitis since ancient times. B. orellana L., seeds contain an orange-red coloured component known as bixin (C25H30O4), which constitutes 80% of the extract.Chemically, bixin is a natural apocarotenoid, biosynthesized through the oxidative degradation of C40 carotenoids. Bixin helps to regulate the Nrf2/MyD88/TLR4 and TGF-1/PPAR-/Smad3 pathways, which further give it antifibrosis, antioxidant, and anti-inflammatory properties. This current review article presents a comprehensive review of bixin as an anti-inflammatory, antioxidant, anticancer,and skin protecting natural product. In addition, the biosynthesis and molecular target of bixin, along with bixin extraction techniques, are also presented.


Assuntos
Produtos Biológicos , Plantas Medicinais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Bixaceae/química , Bixaceae/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Estrutura Molecular , Carotenoides , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Plantas Medicinais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
4.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110702

RESUMO

As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries and has various therapeutic benefits. Traditional medicine has long used the essential oil of patchouli (P. cablin) as a flavoring agent recognized by the FDA. This is a gold mine for battling pathogens in China and India. In recent years, this plant has seen a significant surge in use, and approximately 90% of the world's patchouli oil is produced by Indonesia. In traditional therapies, it is used for the treatment of colds, fever, vomiting, headaches, and stomachaches. Patchouli oil is used in curing many diseases and in aromatherapy to treat depression and stress, soothe nerves, regulate appetite, and enhance sexual attraction. More than 140 substances, including alcohols, terpenoids, flavonoids, organic acids, phytosterols, lignins, aldehydes, alkaloids, and glycosides, have been identified in P. cablin. Pachypodol (C18H16O7) is an important bioactive compound found in P. cablin. Pachypodol (C18H16O7) and many other biologically essential chemicals have been separated from the leaves of P. cablin and many other medicinally significant plants using repeated column chromatography on silica gel. Pachypodol's bioactive potential has been shown by a variety of assays and methodologies. It has been found to have a number of biological activities, including anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, and cytotoxic ones. The current study, which is based on the currently available scientific literature, intends to close the knowledge gap regarding the pharmacological effects of patchouli essential oil and pachypodol, a key bioactive molecule found in this plant.


Assuntos
Óleos Voláteis , Plantas Medicinais , Pogostemon , Quercetina , Óleos Voláteis/farmacologia , Óleos Voláteis/química
5.
ACS Omega ; 5(35): 22008-22020, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923759

RESUMO

The knowledge of a protein's subcellular localization and interacting partners are crucial for elucidating its cellular function and associated regulatory networks. Although FAM26F (family with sequence similarity 26, member F) has been recognized as a vital player in various infections, stimulation studies, cancer, and immune pathogenesis, the precise location and function of FAM26F are not well understood. The current study is the first to focus on functional characterization of FAM26F by analyzing its subcellular localization and identifying its novel interacting partners using advanced proteome approaches. The immunofluorescence and confocal microscopy results revealed FAM26F to be largely localized within the Golgi apparatus of the cell. However, its minor presence in endoplasmic reticulum (ER) pointed toward the probable retrograde transfer of FAM26F from Golgi to ER during adverse conditions. Moreover, co-immunoprecipitation and MS/MS results demonstrated a total of 85 proteins, 44 of which significantly copurified with FAM26F. Interestingly, out of these 44 MS/MS identified proteins, almost 52% were involved in innate immunity, 38.6% in neutrophil degranulation, and remaining 10% were either involved in phosphorylation, degradation, or regulation of apoptosis. Further characterization through Ingenuity Pathway Analysis showed that majority of these proteins was involved in maintaining calcium homeostasis of cell. Consequently, the validation of selected proteins uncovered the key interaction of FAM26F with Thioredoxin, which essentially paved the way for depicting its mechanism of action under stress or disease conditions. It is proposed that activation and inhibition of the cellular immune response is essentially dependent on whether FAM26F or Thioredoxin considerably interact with CD30R.

6.
Acta Neuropathol ; 140(3): 317-339, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32577828

RESUMO

Dysfunctional RNA-binding proteins (RBPs) have been implicated in several neurodegenerative disorders. Recently, this paradigm of RBPs has been extended to pathophysiology of Alzheimer's disease (AD). Here, we identified disease subtype specific variations in the RNA-binding proteome (RBPome) of sporadic AD (spAD), rapidly progressive AD (rpAD), and sporadic Creutzfeldt Jakob disease (sCJD), as well as control cases using RNA pull-down assay in combination with proteomics. We show that one of these identified proteins, splicing factor proline and glutamine rich (SFPQ), is downregulated in the post-mortem brains of rapidly progressive AD patients, sCJD patients and 3xTg mice brain at terminal stage of the disease. In contrast, the expression of SFPQ was elevated at early stage of the disease in the 3xTg mice, and in vitro after oxidative stress stimuli. Strikingly, in rpAD patients' brains SFPQ showed a significant dislocation from the nucleus and cytoplasmic colocalization with TIA-1. Furthermore, in rpAD brain lesions, SFPQ and p-tau showed extranuclear colocalization. Of note, association between SFPQ and tau-oligomers in rpAD brains suggests a possible role of SFPQ in oligomerization and subsequent misfolding of tau protein. In line with the findings from the human brain, our in vitro study showed that SFPQ is recruited into TIA-1-positive stress granules (SGs) after oxidative stress induction, and colocalizes with tau/p-tau in these granules, providing a possible mechanism of SFPQ dislocation through pathological SGs. Furthermore, the expression of human tau in vitro induced significant downregulation of SFPQ, suggesting a causal role of tau in the downregulation of SFPQ. The findings from the current study indicate that the dysregulation and dislocation of SFPQ, the subsequent DNA-related anomalies and aberrant dynamics of SGs in association with pathological tau represents a critical pathway which contributes to rapid progression of AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/patologia , Fator de Processamento Associado a PTB/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Citoplasma/metabolismo , Regulação para Baixo/fisiologia , Humanos , Camundongos Transgênicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Prion ; 14(1): 95-108, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32138593

RESUMO

Cellular prion protein (PrPC) is a plasma membrane glycophosphatidylinositol-anchored protein and it is involved in multiple functions, including neuroprotection and oxidative stress. So far, most of the PrPC functional research is done in neuronal tissue or cell lines; the role of PrPC in non-neuronal tissues such as liver is only poorly understood. To characterize the role of PrPC in the liver, a proteomics approach was applied in the liver tissue of PrPC knockout mice. The proteome analysis and biochemical validations showed an excessive fat accumulation in the liver of PrPC knockout mice with a change in mRNA expression of genes linked to lipid metabolism. In addition, the higher Bax to Bcl2 ratio, up-regulation of tgfb1 mRNA expression in PrPC knockout mice liver, further showed the evidences of metabolic disease. Over-expression of PrPC in fatty acid-treated AML12 hepatic cell line caused a reduction in excessive intracellular fat accumulation; shows association of PrPC levels and lipid metabolism. Therefore, based on observation of excessive fat globules in the liver of ageing PrPC knockout mice and the reduction of fat accumulation in AML12 cell line with PrPC over-expression, the role of PrPC in lipid metabolism is described.


Assuntos
Metabolismo dos Lipídeos , Fígado/metabolismo , Proteínas Priônicas/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Adiposidade , Animais , Linhagem Celular , Eletroforese em Gel Bidimensional , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Feminino , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Masculino , Doenças Metabólicas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/metabolismo , Proteoma/metabolismo , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Triglicerídeos/metabolismo
8.
Environ Monit Assess ; 191(8): 490, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297613

RESUMO

Eukaryotes employ various mechanisms to survive environmental stress conditions. Multicellular organisms eliminate permanently damaged cells by apoptosis, while unicellular eukaryotes like yeast react by decelerating cell aging. In the present study, transcriptomic and proteomic approaches were employed to elucidate the underlying mechanism of delayed apoptosis. Our findings suggest that Candida tropicalis 3Aer has a set of tightly controlled genes that are activated under Cd+2 exposition. Acute exposure to Cd+2 halts the cell cycle at the G2/M phase checkpoint and activates multiple cytoplasmic proteins that overcome effects of Cd+2-induced reactive oxygen species. Prolonged Cd+2 stress damages DNA and initiates GAPDH amyloid formation. This is the first report that Cd+2 challenge initiates dynamic redistribution of GAPDH and MDH and alters various metabolic pathways including the pentose phosphate pathway. In conclusion, the intracellular redistribution of GAPDH and MDH induced by prolonged cadmium stress modulates various cellular reactions, which facilitate delayed aging in the yeast cell.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Candida tropicalis/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Malato Desidrogenase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Candida tropicalis/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteômica , Fatores de Tempo
9.
Appl Microbiol Biotechnol ; 101(20): 7715-7728, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28920150

RESUMO

This study examines the bioremediation potential and cadmium-induced cellular response on a molecular level in Candida tropicalis 3Aer. Spectroscopic analysis clearly illustrated the involvement of yeast cell wall components in biosorption. Cadmium bioaccumulation was confirmed by TEM, SEM, and EDX examination. TEM images revealed extracellular as well as cytoplasmic and vacuolar cadmium nanoparticle formation, further validated by presence of ycf1 gene and increased biosynthesis of GSH under cadmium stress. Fourteen proteins exhibited differential expression and during cellular redox homeostasis are found to involve in nitrogen metabolism, nucleotide biosynthesis, and carbohydrate catabolism. Interestingly, C. tropicalis 3Aer is equipped with nitrile hydratase enzyme, rarely been reported in yeast. It has the potential to remove nitriles from the environment. The Cd+2 toxicity not only caused growth stasis but also upregulated the cysteine biosynthesis, protein folding and cytoplasmic detoxification response elements. The present study suggests that C. tropicalis 3Aer is a potential candidate for bioremediating environmental pollution by Cd+2.


Assuntos
Cádmio/metabolismo , Candida tropicalis/efeitos dos fármacos , Candida tropicalis/fisiologia , Cátions Bivalentes/metabolismo , Poluentes Ambientais/metabolismo , Cádmio/toxicidade , Candida tropicalis/genética , Candida tropicalis/ultraestrutura , Cátions Bivalentes/toxicidade , Poluentes Ambientais/toxicidade , Perfilação da Expressão Gênica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X , Estresse Fisiológico
10.
Expert Rev Mol Diagn ; 17(10): 897-904, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28817974

RESUMO

INTRODUCTION: The development of in vitro protein misfolding amplification assays for the detection and analysis of abnormally folded proteins, such as proteinase K resistant prion protein (PrPres) was a major innovation in the prion field. In prion diseases, these types of assays imitate the pathological conversion of the cellular PrP (PrPC) into a proteinase resistant associated conformer or amyloid, called PrPres. Areas covered: The most prominent protein misfolding amplification assays are the protein misfolding cyclic amplification (PMCA), which is based on sonication and the real-time quaking-induced conversion (RT-QuIC) technique based on shaking. The more recently established RT-QuIC is fully automatic and enables the monitoring of misfolded protein aggregates in real-time by using a fluorescent dye. Expert commentary: RT-QuIC is a very robust and highly reproducible test system which is applicable in diagnosis, prion strain-typing, drug pre-screening and other amyloidopathies.


Assuntos
Amiloidose/diagnóstico , Amiloidose/metabolismo , Bioensaio/métodos , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Príons/metabolismo , Amiloidose/tratamento farmacológico , Biomarcadores , Líquidos Corporais/metabolismo , Diagnóstico Diferencial , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas
11.
Acta Neuropathol Commun ; 5(1): 35, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28449707

RESUMO

Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrPSc). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca2+) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca2+ responsive genes in sCJD brain tissue, accompanied by two Ca2+-dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrPSc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.


Assuntos
Encéfalo/metabolismo , Cálcio/metabolismo , Calpaína/metabolismo , Catepsinas/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Homeostase/fisiologia , Animais , Encéfalo/patologia , Cátions Bivalentes/metabolismo , Células Cultivadas , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Mesocricetus , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Proteínas PrPSc/metabolismo , Ratos Wistar , Proteínas Recombinantes/metabolismo , Ovinos
12.
Chemosphere ; 174: 136-147, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161514

RESUMO

Bacteria develop a variety of adaptations at transcriptomic, metabolomic and proteomic levels in order to survive potentially damaging environmental perturbations. Present study is exploring the fluctuations in proteome of E. coli P4 to knob Cd+2-induced cytotoxicity. An attempt was also made to integrate all these approaches to gain comprehensive insight of Cd+2 stress response in E. coli P4. This study is exposing the altered behavior of various proteins and their underlying metabolic pathways which have previously not been reported with reference to Cd+2 stress such as sulfoquinovose biosynthesis and degradation pathway. Some of the responses studied on all integrated levels followed same dynamics and strategies to conserve energy by down regulating carbohydrate metabolism (depicted by the repression of succinyl-CoA ligase) and growth stasis (down regulation of ftsZ). Moreover, proteomic analysis clearly revealed the affection of Cd+2 stress on various proteins expression including Rrf, MdaB, DapA, GpmA,Cdd, FabI, DsbA, ZnuA and YihW found modulating key cellular metabolic pathways enabling E. coli P4 to withstand Cd+2-induced toxic effects. Furthermore, over-expression of Mn-SOD provided evidence that Cd+2exposure induces superoxide free radicals mediated oxidative stress rather than hydrogen peroxide (H2O2). EnvZ/OmpR -a two component cell envelope regulatory system was observed operating to homeostat the cell's internal environment. Cd+2 bioremediation potential of E. coli P4 and its kinetic and thermodynamic basis were studied by applying different isotherm models which nominated E. coli P4 a good bioresource for green chemistry to eradicate environmental Cd+2.


Assuntos
Cádmio/toxicidade , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteoma/análise , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Regulação para Baixo , Eletroforese em Gel Bidimensional , Escherichia coli/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Cell Death Dis ; 8(1): e2557, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102851

RESUMO

Anti-apoptotic properties of physiological and elevated levels of the cellular prion protein (PrPc) under stress conditions are well documented. Yet, detrimental effects of elevated PrPc levels under stress conditions, such as exposure to staurosporine (STS) have also been described. In the present study, we focused on discerning early apoptotic STS-induced proteome and phospho-proteome changes in SH-SY5Y human neuroblastoma cells stably transfected either with an empty or PRNP-containing vector, expressing physiological or supraphysiological levels of PrPc, respectively. PrPc-overexpression per se appears to stress the cells under STS-free conditions as indicated by diminished cell viability of PrPc-overexpressing versus control cells. However, PrPc-overexpression becomes advantageous following exposure to STS. Thus, only a short exposure (2 h) to 1 µM STS results in lower survival rates and significantly higher caspase-3 activity in control versus PrPc-overexpressing cells. Hence, by exposing both experimental groups to the same apoptotic conditions we were able to induce apoptosis in control, but not in PrPc-overexpressing cells (as assessed by caspase-3 activity), which allowed for filtering out proteins possibly contributing to protection against STS-induced apoptosis in PrPc-overexpressing cells. Among other proteins regulated by different PrPc levels following exposure to STS, those involved in maintenance of cytoskeleton integrity caught our attention. In particular, the finding that elevated PrPc levels significantly reduce profilin-1 (PFN-1) expression. PFN-1 is known to facilitate STS-induced apoptosis. Silencing of PFN-1 expression by siRNA significantly increased viability of PrPc-overexpressing versus control cells, under STS treatment. In addition, PrPc-overexpressing cells depleted of PFN-1 exhibited increased viability versus PrPc-overexpressing cells with preserved PFN-1 expression, both subjected to STS. Concomitant increase in caspase-3 activity was observed in control versus PrPc-overexpressing cells after treatment with siRNA- PFN-1 and STS. We suggest that reduction of PFN-1 expression by elevated levels of PrPc may contribute to protective effects PrPc-overexpressing SH-SY5Y cells confer against STS-induced apoptosis.


Assuntos
Apoptose/genética , Neuroblastoma/genética , Proteínas Priônicas/genética , Profilinas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Proteoma/genética , Estaurosporina/administração & dosagem , Transfecção
14.
Neurobiol Aging ; 36(9): 2597-606, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26170132

RESUMO

Understanding inflammatory mechanisms in vascular dementia (VD) is pivotal for achieving better insights into changes in brain metabolism. We performed cytokine profiling and measured levels of the cellular prion protein (PrP(C)) in serum and cerebrospinal fluid (CSF) samples from patients with VD and with vascular encephalopathy (VE). Significant changes were observed for interleukin (IL)-1ß, IL-4, IL-5, tumor necrosis factor alpha, interferon gamma, granulocyte-colony stimulating factor, monocyte chemotactic protein 1, and macrophage inflammatory protein 1 beta in serum and for IL-6 and granulocyte macrophage colony-stimulating factor in CSF of VD and VE patients, suggesting that most of immune markers depend on vascular lesions, while only IL-6 was related to dementia. In VD patients, the severity of dementia as defined by the Mini-Mental Status Test or Cambridge Cognitive Examination battery test was significantly correlated with the levels of IL-8 (CSF) and macrophage inflammatory protein 1 beta (serum and CSF). Additionally, in CSF of VD patients, our data revealed a correlation between immune and neurodegenerative marker proteins. Both indicate an association of neuroinflammation and cognitive decline. Levels of PrP(C) were regulated differentially in VD and VE patients compared with Alzheimer's disease patients and controls. Moreover, we observed a significant negative correlation between cytokine levels and PrP(C) in VD patients in CSF and serum, as well as a correlation between PrP(C) expression with levels of neurodegenerative marker proteins in CSF (in VD and VE patients). Our data suggest that immunological modifiers play a role in VD and VE patients and provide evidence for an association of PrP(C) with immune and neurodegenerative markers.


Assuntos
Transtornos Cerebrovasculares/líquido cefalorraquidiano , Citocinas/líquido cefalorraquidiano , Demência Vascular/líquido cefalorraquidiano , Príons/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Modelos Lineares , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
15.
J Alzheimers Dis ; 38(3): 551-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24028865

RESUMO

Previous studies indicate an important role for the cellular prion protein (PrP(C)) in the development of Alzheimer's disease (AD) pathology. In the present study, we analyzed the involvement of PrP(C) in different pathological mechanisms underlying AD: the processing of the amyloid-ß protein precursor (AßPP) and its interaction with AßPP, tau, and different phosphorylated forms of the tau protein (p-tau). The effect of PrP(C) on tau expression was investigated in various cellular compartments using a HEK293 cell model expressing a tau mutant (3PO-tau) or wild type (WT)-tau. We could show that PrP(C) reduces AßPP cleavage, leading to decreased levels of Aß40 and sAßPP without changing the protein expression of AßPP, ß-secretase, or γ-secretase. Tau and its phosphorylated forms were identified as interactions partners for PrP(C), raising the question as to whether PrP(C) might also be involved in tau pathology. Overexpression of PrP(C) in PRNP and 3PO-tau transfected cells resulted in a reduction of 3PO-tau and p-tau as well as a decrease of 3PO-tau-related toxicity. In addition, we used the transgenic PrP(C) knockout (Prnp0/0) mouse line to study the dynamics of tau phosphorylation, an important pathological hallmark in the pathogenesis of AD in vivo. There, an effect of PrP(C) on tau expression could be observed under oxidative stress conditions but not during aging. In summary, we provide further evidence for interactions of PrP(C) with proteins that are known to be the key players in AD pathogenesis. We identified tau and its phosphorylated forms as potential PrP-interactors and report a novel protective function of PrP(C) in AD-like tau pathology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Regulação da Expressão Gênica/genética , Mutação/genética , Príons/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroblastoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA