Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prog Mol Biol Transl Sci ; 195: 27-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36707154

RESUMO

Neurological crosstalk between the endocannabinoid and estrogen systems has been a growing topic of discussion over the last decade. Although the main estrogenic ligand, estradiol (E2), influences endocannabinoid signaling in both male and female animals, the latter experiences significant and rhythmic fluctuations in E2 as well as other sex hormones. This is referred to as the menstrual cycle in women and the estrus cycle in rodents such as mice and rats. Consisting of 4 distinct hormone-driven phases, the rodent estrus cycle modulates both endocannabinoid and exogenous cannabinoid signaling resulting in unique behavioral outcomes based on the cycle phase. For example, cannabinoid receptor agonist-induced antinociception is greatest during proestrus and estrus, when circulating and brain levels of E2 are high, as compared to metestrus and diestrus when E2 concentrations are low. Pain processing occurs throughout the cerebral cortex and amygdala of the forebrain; periaqueductal grey of the midbrain; and medulla and spine of the hindbrain. As a result, past molecular investigations on these endocannabinoid-estrogen system interactions have focused on these specific brain regions. Here, we will bridge regional molecular trends with neurophysiological evidence of how plasma membrane estrogen receptor (ER) activation by E2 leads to postsynaptic endocannabinoid synthesis, retrograde signaling, and alterations in inhibitory neurotransmission. These signaling pathways depend on ER heterodimers, current knowledge of which will also be detailed in this review. Overall, the aim of this review article is to systematically summarize how the cannabinoid receptors and endocannabinoids change in expression and function in specific brain regions throughout the estrus cycle.


Assuntos
Endocanabinoides , Estradiol , Ratos , Feminino , Masculino , Camundongos , Animais , Estradiol/farmacologia , Estradiol/metabolismo , Endocanabinoides/metabolismo , Roedores , Estro/fisiologia , Estrogênios/metabolismo , Encéfalo/metabolismo
2.
Pharmacol Res Perspect ; 10(3): e00950, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35466560

RESUMO

Sexual dimorphisms are observed in cannabinoid pharmacology. It is widely reported that female animals are more sensitive to the cataleptic, hypothermic, antinociceptive, and anti-locomotive effects of cannabinoid receptor agonists such as CP55,940. Despite awareness of these sex differences, there is little consideration for the pharmacodynamic differences within females. The mouse estrus cycle spans 4-5 days and consists of four sex hormone-mediated phases: proestrus, estrus, metestrus, and diestrus. The endocannabinoid system interacts with female sex hormones including ß-estradiol, which may influence receptor expression throughout the estrus cycle. In the current study, sexually mature female C57BL/6 mice in either proestrus or metestrus were administered either 1 mg/kg i.p. of the cannabinoid receptor agonist CP55,940 or vehicle. Mice then underwent the tetrad battery of behavioral assays measuring catalepsy, internal body temperature, thermal nociception, and locomotion. Compared with female mice in metestrus, those in proestrus were more sensitive to the anti-nociceptive effects of CP55,940. A similar trend was observed in CP55,940-induced catalepsy; however, this difference was not significant. As for cannabinoid receptor expression in brain regions underlying antinociception, the spine tissue of proestrus mice that received CP55,940 exhibited increased expression of cannabinoid receptor type 1 relative to treatment-matched mice in metestrus. These results affirm the importance of testing cannabinoid effects in the context of the female estrus cycle.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Estro , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Canabinoides
3.
Sci Rep ; 11(1): 10611, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012003

RESUMO

The first synthetic cannabinoid receptor agonists (SCRAs) were designed as tool compounds to study the endocannabinoid system's two predominant cannabinoid receptors, CB1R and CB2R. Unfortunately, novel SCRAs now represent the most rapidly proliferating novel psychoactive substances (NPS) of abuse globally. Unlike ∆9-tetrahydrocannabinol, the CB1R and CB2R partial agonist and the intoxicating constituent of Cannabis, many SCRAs characterized to date are full agonists of CB1R. Gaining additional insight into the pharmacological activity of these SCRAs is critical to assess and regulate NPSs as they enter the marketplace. The purpose of this study was to assess select SCRAs recently identified by Canadian police, border service agency, private companies and the illicit market as potential CB1R and CB2R agonists. To this end, fifteen SCRAs were screened for in vitro activity and in silico interactions at CB1R and CB2R. Several SCRAs were identified as being highly biased for cAMP inhibition or ßarrestin2 recruitment and receptor subtype selectivity between CB1R and CB2R. The indazole ring and halogen-substituted butyl or pentyl moieties were identified as two structural features that may direct ßarrestin2 bias. Two highly-biased SCRAs-JWH-018 2'-napthyl-N-(3-methylbutyl) isomer (biased toward cAMP inhibition) and 4-fluoro MDMB-BINACA (biased toward ßarrestin2 recruitment) displayed unique and differential in vivo activity in mice. These data provide initial insight into the correlations between structure, signalling bias, and in vivo activity of the SCRAs.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Temperatura Corporal , Células CHO , Agonistas de Receptores de Canabinoides/química , Catalepsia , Colforsina/farmacologia , Cricetulus , AMP Cíclico/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Nociceptividade/efeitos dos fármacos , beta-Arrestina 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA