Assuntos
Doenças Cardiovasculares , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
INTRODUCTION: The multidisciplinary American Radium Society Thoracic Committee was assigned to create appropriate use criteria on cardiac toxicity prevention and management for patients undergoing radiotherapy. METHODS: A systematic review of the current literature was conducted. Case variants of patients with thoracic malignancies undergoing radiation were created based on presence or absence of cardiovascular risk factors and treatment-related risks assessed by dose exposure to the heart and cardiac substructures. Modified Delphi methodology was used to evaluate the variants and procedures, with less than or equal to three rating points from median defining agreement/consensus. RESULTS: A total of six variants were evaluated. The panel felt that patients with cardiac comorbidities at high risk for radiation-related cardiac toxicity should undergo a prescreening cardiac-focused history and physical (H&P) examination, electrocardiogram, cardiac imaging including an echocardiogram, and referral to a cardiologist/cardio-oncologist. Recommendations for those without cardiac comorbidities at low risk for cardiac toxicity were to undergo a baseline H&P examination only. Conversely, those without cardiac comorbidities but at high risk for radiation-related cardiac toxicity were recommended to undergo a prescreening electrocardiogram, in addition to a H&P examination. For patients with cardiac comorbidities at low risk for cardiac toxicity, the panel felt that prescreening and postscreening tests may be appropriate. CONCLUSIONS: The American Radium Society Thoracic appropriate use criteria panel has developed multidisciplinary consensus guidelines for cardiac toxicity prevention, surveillance, and management after thoracic radiotherapy based on cardiac comorbidities at presentation and risk of radiation-related cardiac toxicity.
RESUMO
Cardiovascular and cancer outcomes intersect within the realm of cardio-oncology survivorship care, marked by disparities across ethnic, racial, social, and geographical landscapes. Although the clinical community is increasingly aware of this complex issue, effective solutions are trailing. To attain substantial public health impact, examinations of cancer types and cardiovascular risk mitigation require complementary approaches that elicit the patient's perspective, scale it to a population level, and focus on actionable population health interventions. Adopting such a multidisciplinary approach will deepen our understanding of patient awareness, motivation, health literacy, and community resources for addressing the unique challenges of cardio-oncology. Geospatial analysis aids in identifying key communities in need within both granular and broader contexts. In this review, we delineate a pathway that navigates barriers from individual to community levels. Data gleaned from these perspectives are critical in informing interventions that empower individuals within diverse communities and improve cardio-oncology survivorship.
RESUMO
Background: Immune-checkpoint inhibitors (ICI) are associated with life-threatening myocarditis but milder presentations are increasingly recognized. The same autoimmune process that causes ICI-myocarditis can manifest concurrent generalized myositis, myasthenia-like syndrome, and respiratory muscle failure. Prognostic factors for this "cardiomyotoxicity" are lacking. Methods: A multicenter registry collected data retrospectively from 17 countries between 2014-2023. A multivariable cox regression model (hazard-ratio(HR), [95%confidence-interval]) was used to determine risk factors for the primary composite outcome: severe arrhythmia, heart failure, respiratory muscle failure, and/or cardiomyotoxicity-related death. Covariates included demographics, comorbidities, cardio-muscular symptoms, diagnostics, and treatments. Time-dependent covariates were used and missing data were imputed. A point-based prognostic risk score was derived and externally validated. Results: In 748 patients (67% male, age 23-94), 30-days incidence of the primary composite outcome, cardiomyotoxic death, and overall death were 33%, 13%, and 17% respectively. By multivariable analysis, the primary composite outcome was associated with active thymoma (HR=3.60[1.93-6.72]), presence of cardio-muscular symptoms (HR=2.60 [1.58-4.28]), low QRS-voltage on presenting electrocardiogram (HR for ≤0.5mV versus >1mV=2.08[1.31-3.30]), left ventricular ejection fraction (LVEF) <50% (HR=1.78[1.22-2.60]), and incremental troponin elevation (HR=1.86 [1.44-2.39], 2.99[1.91-4.65], 4.80[2.54-9.08], for 20, 200 and 2000-fold above upper reference limit, respectively). A prognostic risk score developed using these parameters showed good performance; 30-days primary outcome incidence increased gradually from 3.9%(risk-score=0) to 81.3%(risk-score≥4). This risk-score was externally validated in two independent French and US cohorts. This risk score was used prospectively in the external French cohort to identify low risk patients who were managed with no immunosuppression resulting in no cardio-myotoxic events. Conclusions: ICI-myocarditis can manifest with high morbidity and mortality. Myocarditis severity is associated with magnitude of troponin, thymoma, low-QRS voltage, depressed LVEF, and cardio-muscular symptoms. A risk-score incorporating these features performed well. Trial registration number: NCT04294771 and NCT05454527.
RESUMO
Hematopoietic stem cell transplantation can cure various disorders but poses cardiovascular risks, especially for elderly patients and those with cardiovascular diseases. Cardiovascular evaluations are crucial in pretransplantation assessments, but guidelines are lacking. This American Heart Association scientific statement summarizes the data on transplantation-related complications and provides guidance for the cardiovascular management throughout transplantation. Hematopoietic stem cell transplantation consists of 4 phases: pretransplantation workup, conditioning therapy and infusion, immediate posttransplantation period, and long-term survivorship. Complications can occur during each phase, with long-term survivors facing increased risks for late effects such as cardiovascular disease, secondary malignancies, and endocrinopathies. In adults, arrhythmias such as atrial fibrillation and flutter are the most frequent acute cardiovascular complication. Acute heart failure has an incidence ranging from 0.4% to 2.2%. In pediatric patients, left ventricular systolic dysfunction and pericardial effusion are the most common cardiovascular complications. Factors influencing the incidence and risk of complications include pretransplantation therapies, transplantation type (autologous versus allogeneic), conditioning regimen, comorbid conditions, and patient age. The pretransplantation cardiovascular evaluation consists of 4 steps: (1) initial risk stratification, (2) exclusion of high-risk cardiovascular disease, (3) assessment of cardiac reserve, and (4) optimization of cardiovascular reserve. Clinical risk scores could be useful tools for the risk stratification of adult patients. Long-term cardiovascular management of hematopoietic stem cell transplantation survivors includes optimizing risk factors, monitoring, and maintaining a low threshold for evaluating cardiovascular causes of symptoms. Future research should prioritize refining risk stratification and creating evidence-based guidelines and strategies to optimize outcomes in this growing patient population.
Assuntos
Doenças Cardiovasculares , Cardiopatias , Transplante de Células-Tronco Hematopoéticas , Adulto , Humanos , Criança , Idoso , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/terapia , Sobrevivência , American Heart Association , Condicionamento Pré-Transplante/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Cardiopatias/etiologiaRESUMO
Advances in cancer therapeutics have led to dramatic improvements in survival, now inclusive of nearly 20 million patients and rising. However, cardiovascular toxicities associated with specific cancer therapeutics adversely affect the outcomes of patients with cancer. Advances in cardiovascular imaging have solidified the critical role for robust methods for detecting, monitoring, and prognosticating cardiac risk among patients with cancer. However, decentralized evaluations have led to a lack of consensus on the optimal uses of imaging in contemporary cancer treatment (eg, immunotherapy, targeted, or biological therapy) settings. Similarly, available isolated preclinical and clinical studies have provided incomplete insights into the effectiveness of multiple modalities for cardiovascular imaging in cancer care. The aims of this scientific statement are to define the current state of evidence for cardiovascular imaging in the cancer treatment and survivorship settings and to propose novel methodological approaches to inform the optimal application of cardiovascular imaging in future clinical trials and registries. We also propose an evidence-based integrated approach to the use of cardiovascular imaging in routine clinical settings. This scientific statement summarizes and clarifies available evidence while providing guidance on the optimal uses of multimodality cardiovascular imaging in the era of emerging anticancer therapies.
Assuntos
Doenças Cardiovasculares , Neoplasias , Estados Unidos , Humanos , American Heart Association , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Oncologia , Imagem Multimodal/métodos , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/terapiaRESUMO
BACKGROUND: Global collaboration in cardio-oncology is needed to understand the prevalence of cancer therapy-related cardiovascular toxicity in different risk groups, practice settings, and geographic locations. There are limited data on the socioeconomic and racial/ethnic disparities that may impact access to care and outcomes. To address these gaps, we established the Global Cardio-Oncology Registry, a multinational, multicenter prospective registry. METHODS: We assembled cardiologists and oncologists from academic and community settings to collaborate in the first Global Cardio-Oncology Registry. Subsequently, a survey for site resources, demographics, and intention to participate was conducted. We designed an online data platform to facilitate this global initiative. RESULTS: A total of 119 sites responded to an online questionnaire on their practices and main goals of the registry: 49 US sites from 23 states and 70 international sites from 5 continents indicated a willingness to participate in the Global Cardio-Oncology Registry. Sites were more commonly led by cardiologists (85/119; 72%) and were more often university/teaching (81/119; 68%) than community based (38/119; 32%). The average number of cardio-oncology patients treated per month was 80 per site. The top 3 Global Cardio-Oncology Registry priorities in cardio-oncology care were breast cancer, hematologic malignancies, and patients treated with immune checkpoint inhibitors. Executive and scientific committees and specific committees were established. A pilot phase for breast cancer using Research Electronic Data Capture Cloud platform recently started patient enrollment. CONCLUSIONS: We present the structure for a global collaboration. Information derived from the Global Cardio-Oncology Registry will help understand the risk factors impacting cancer therapy-related cardiovascular toxicity in different geographic locations and therefore contribute to reduce access gaps in cardio-oncology care. Risk calculators will be prospectively derived and validated.
Assuntos
Neoplasias da Mama , Cardiologistas , Cardiologia , Neoplasias , Humanos , Feminino , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/terapia , Oncologia , Sistema de Registros , Estudos Multicêntricos como AssuntoRESUMO
Objective: The primary objectives of this pilot study were to assess cognition and cerebral metabolic rate of oxygen (CMRO2) consumption in people with severe obesity before (baseline), and again, 2- and 14-weeks after sleeve gastrectomy bariatric surgery. Methods: Six people with severe/class 3 obesity (52 ± 10 years, five females, body mass index (BMI) = 41.9 ± 3.9 kg/m2), and 10 normal weight sex- and age-matched healthy controls (HC) (48 ± 6 years, eight females, 22.8 ± 1.9 kg/m2). Global CMRO2 was measured non-invasively using MRI and cognition using the Integneuro testing battery. Results: Following a sleeve gastrectomy induced weight loss of 6.4 ± 2.5 kg (% total-body-weight-lost = 5.4) over two-weeks, cognition total scores improved by 0.8 ± 0.5 T-scores (p=0.03, 15.8% improvement from baseline). Weight loss over 14-weeks post-surgery was 15.4 ± 3.6 kg (% total-body-weight-lost = 13.0%) and cognition improved by 1.1 ± 0.4 (p=0.003, 20.6% improvement from baseline). At 14-weeks, cognition was 6.4 ± 0.7, comparable to 6.0 ± 0.6 observed in the HC group. Baseline CMRO2 was significantly higher compared to the HC (230.4 ± 32.9 vs. 177.9 ± 33.9 µmol O2/100 g/min, p=0.02). Compared to baseline, CMRO2 was 234.3 ± 16.2 µmol O2/100 g/min at 2-weeks after surgery (p=0.8, 1.7% higher) and 217.3 ± 50.4 at 14-weeks (p=0.5, 5.7% lower) after surgery. 14-weeks following surgery, CMRO2 was similar to HC (p=0.17). Conclusion: Sleeve gastrectomy induced weight loss was associated with an increase in cognition and a decrease in CMRO2 observed 14-weeks after surgery. The association between weight loss, improved cognition and CMRO2 decrease should be evaluated in larger future studies.
Assuntos
Cirurgia Bariátrica , Oxigênio , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Projetos Piloto , Encéfalo , Obesidade , Cognição , Redução de PesoRESUMO
Chimeric antigen receptor T-cell (CAR T) therapy is a revolutionary personalized therapy that has significantly impacted the treatment of patients with hematologic malignancies refractory to other therapies. Cytokine release syndrome (CRS) is a major side effect of CAR T therapy that can occur in 70-90% of patients, with roughly 40% of patients at grade 2 or higher. CRS can cause an intense inflammatory state leading to cardiovascular complications, including troponin elevation, arrhythmias, hemodynamic instability, and depressed left ventricular systolic function. There are currently no standardized guidelines for the management of cardiovascular complications due to CAR T therapy, but systematic practice patterns are emerging. In this review, we contextualize the history and indications of CAR T cell therapy, side effects related to this treatment, strategies to optimize the cardiovascular health prior to CAR T and the management of cardiovascular complications related to CRS. We analyze the existing data and discuss potential future approaches.
RESUMO
The population of patients with cancer is rapidly expanding, and the diagnosis and monitoring of cardiovascular complications greatly rely on imaging. Numerous advances in the field of cardio-oncology and imaging have occurred in recent years. This review presents updated and practical approaches for multimodality cardiovascular imaging in the cardio-oncology patient and provides recommendations for imaging to detect the myriad of adverse cardiovascular effects associated with antineoplastic therapy, such as cardiomyopathy, atherosclerosis, vascular toxicity, myocarditis, valve disease, and cardiac masses. Uniquely, we address the role of cardiovascular imaging in patients with pre-existing cardiomyopathy, pregnant patients, long-term survivors, and populations with limited resources. We also address future avenues of investigation and opportunities for artificial intelligence applications in cardio-oncology imaging. This review provides a uniform practical approach to cardiovascular imaging for patients with cancer.
Assuntos
Antineoplásicos , Doenças Cardiovasculares , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Cardiopatias , Neoplasias , Antineoplásicos/efeitos adversos , Inteligência Artificial , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/diagnóstico por imagem , Cardiopatias/diagnóstico , Humanos , Oncologia , Neoplasias/complicações , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológicoRESUMO
Gender differences exist throughout the medical field and significant progress has been made in understanding the effects of gender in many aspects of healthcare. The field of cardio-oncology is diverse and dynamic with new oncologic and cardiovascular therapies approved each year; however, there is limited knowledge regarding the effects of gender within cardio-oncology, particularly the impact of gender on cardiotoxicities. The relationship between gender and cardio-oncology is unique in that gender likely affects not only the biological underpinnings of cancer susceptibility, but also the response to both oncologic and cardiovascular therapies. Furthermore, gender has significant socioeconomic and psychosocial implications which may impact cancer and cardiovascular risk factor profiles, cancer susceptibility, and the delivery of healthcare. In this review, we summarize the effects of gender on susceptibility of cancer, response to cardiovascular and cancer therapies, delivery of healthcare, and highlight the need for further gender specific studies regarding the cardiovascular effects of current and future oncological treatments.
RESUMO
PURPOSE: Immune checkpoint blocker (ICB) associated myocarditis (ICB-myocarditis) may present similarly and/or overlap with other cardiac pathology including acute coronary syndrome presenting a challenge for prompt clinical diagnosis. METHODS: An international registry was used to retrospectively identify cases of ICB-myocarditis. Presence of coronary artery disease (CAD) was defined as coronary artery stenosis >70% in patients undergoing coronary angiogram. RESULTS: Among 261 patients with clinically suspected ICB-myocarditis who underwent a coronary angiography, CAD was present in 59/261 patients (22.6%). Coronary revascularization was performed during the index hospitalisation in 19/59 (32.2%) patients. Patients undergoing coronary revascularization less frequently received steroids administration within 24 h of admission compared to the other groups (p = 0.029). Myocarditis-related 90-day mortality was 9/17 (52.7%) in the revascularised cohort, compared to 5/31 (16.1%) in those not revascularized and 25/156 (16.0%) in those without CAD (p = 0.001). Immune-related adverse event-related 90-day mortality was 9/17 (52.7%) in the revascularized cohort, compared to 6/31 (19.4%) in those not revascularized and 31/156 (19.9%) in no CAD groups (p = 0.007). All-cause 90-day mortality was 11/17 (64.7%) in the revascularized cohort, compared to 13/31 (41.9%) in no revascularization and 60/158 (38.0%) in no CAD groups (p = 0.10). After adjustment of age and sex, coronary revascularization remained associated with ICB-myocarditis-related death at 90 days (hazard ratio [HR] = 4.03, 95% confidence interval [CI] 1.84-8.84, p < 0.001) and was marginally associated with all-cause death (HR = 1.88, 95% CI, 0.98-3.61, p = 0.057). CONCLUSION: CAD may exist concomitantly with ICB-myocarditis and may portend a poorer outcome when revascularization is performed. This is potentially mediated through delayed diagnosis and treatment or more severe presentation of ICB-myocarditis.
Assuntos
Doença da Artéria Coronariana , Miocardite , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Inibidores de Checkpoint Imunológico , Estudos Retrospectivos , Miocardite/tratamento farmacológico , Prognóstico , Sistema de Registros , Fatores de RiscoRESUMO
INTRODUCTION: The development of Bruton
Assuntos
Hipertensão , Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Piperidinas , Inibidores de Proteínas Quinases/efeitos adversos , Pirimidinas/efeitos adversosRESUMO
Cardiovascular imaging is an evolving component in the care of cancer patients. With improved survival following prompt cancer treatment, patients are facing increased risks of cardiovascular complications. While currently established imaging modalities are providing useful structural mechanical information, they continue to develop towards increased specificity. New modalities, emerging from basic science and oncology, are being translated, targeting earlier stages of cardiovascular disease. Besides these technical advances, matching an imaging modality with the patients' individual risk level for a specific pathological change is part of a successful imaging strategy. The choice of suitable imaging modalities and time points for specific patients will impact the cardio-oncological risk stratification during surveillance and follow-up monitoring. In addition, future imaging tools are poised to give us important insights into the underlying cardiovascular molecular pathology associated with cancer and oncological therapies. This review aims at giving an overview of the novel imaging technologies that have the potential to change cardio-oncological science and clinical practice in the near future.
Assuntos
Antineoplásicos , Doenças Cardiovasculares , Cardiopatias , Neoplasias , Antineoplásicos/efeitos adversos , Cardiotoxicidade/etiologia , Doenças Cardiovasculares/etiologia , Cardiopatias/tratamento farmacológico , Humanos , Oncologia/métodos , Neoplasias/complicaçõesRESUMO
The aim of the NCCN Guidelines for Management of Immunotherapy-Related Toxicities is to provide guidance on the management of immune-related adverse events resulting from cancer immunotherapy. The NCCN Management of Immunotherapy-Related Toxicities Panel is an interdisciplinary group of representatives from NCCN Member Institutions, consisting of medical and hematologic oncologists with expertise across a wide range of disease sites, and experts from the areas of dermatology, gastroenterology, endocrinology, neurooncology, nephrology, cardio-oncology, ophthalmology, pulmonary medicine, and oncology nursing. The content featured in this issue is an excerpt of the recommendations for managing toxicities related to CAR T-cell therapies and a review of existing evidence. For the full version of the NCCN Guidelines, including recommendations for managing toxicities related to immune checkpoint inhibitors, visit NCCN.org.
Assuntos
Oncologia , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Fatores Imunológicos/uso terapêutico , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Neoplasias/tratamento farmacológicoRESUMO
T-cell therapies, such as chimeric antigen receptor (CAR) T-cell, bispecific T-cell engager (BiTE) and tumor-infiltrating lymphocyte (TIL) therapies, fight cancer cells harboring specific tumor antigens. However, activation of the immune response by these therapies can lead to a systemic inflammatory response, termed cytokine release syndrome (CRS), that can result in adverse events, including cardiotoxicity. Retrospective studies have shown that cardiovascular complications occur in 10% to 20% of patients who develop high-grade CRS after CAR T-cell therapy and can include cardiomyopathy, heart failure, arrhythmias, and myocardial infarction. While cardiotoxicities have been less commonly reported with BiTE and TIL therapies, systematic surveillance for cardiotoxicity has not been performed. Patients undergoing T-cell therapies should be screened for cardiovascular conditions that may not be able to withstand the hemodynamic perturbations imposed by CRS. Generalized management of CRS, including the use of the interleukin-6 antagonist, tocilizumab, for high-grade CRS, is used to mitigate the risk of cardiotoxicity.
RESUMO
Improving cancer survival represents the most significant effect of precision medicine and personalized molecular and immunologic therapeutics. Cardiovascular health becomes henceforth a key determinant for the direction of overall outcomes after cancer. Comprehensive tissue diagnostic studies undoubtedly have been and continue to be at the core of the fight against cancer. Will a systemic approach integrating circulating blood-derived biomarkers, multimodality imaging technologies, strategic panomics, and real-time streams of digitized physiological data overcome the elusive cardiovascular tissue diagnosis in cardio-oncology? How can such a systemic approach be personalized for application in day-to-day clinical work, with diverse patient populations, cancer diagnoses, and therapies? To address such questions, this scientific statement approaches a broad definition of the biomarker concept. It summarizes the current literature on the utilization of a multitude of established cardiovascular biomarkers at the intersection with cancer. It identifies limitations and gaps of knowledge in the application of biomarkers to stratify the cardiovascular risk before cancer treatment, monitor cardiovascular health during cancer therapy, and detect latent cardiovascular damage in cancer survivors. Last, it highlights areas in biomarker discovery, validation, and clinical application for concerted efforts from funding agencies, scientists, and clinicians at the cardio-oncology nexus.