Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(5): 847-859, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658806

RESUMO

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Assuntos
Homeostase , Janus Quinases , Macrófagos , Camundongos Knockout , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos Endogâmicos C57BL , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , TYK2 Quinase/metabolismo , TYK2 Quinase/genética , Regulação da Expressão Gênica
2.
Immunity ; 54(11): 2514-2530.e7, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34717796

RESUMO

Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Sistemas de Transporte de Aminoácidos/metabolismo , Autoimunidade , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Metabolismo Energético , Humanos , Imunidade , Transdução de Sinais
3.
PLoS Pathog ; 17(4): e1009487, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33905460

RESUMO

Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.


Assuntos
Influenza Humana/imunologia , Lipocalina-2/metabolismo , Microbiota/imunologia , Transcriptoma , Animais , Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Feminino , Microbioma Gastrointestinal , Homeostase , Humanos , Imunidade , Influenza Humana/virologia , Lipocalina-2/genética , Pulmão/imunologia , Pulmão/virologia , Ativação Linfocitária , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos
4.
Vet Microbiol ; 196: 85-92, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27939161

RESUMO

Equine sarcoids develop upon bovine papillomavirus type 1 or 2 (BPV1, BPV2) infection in conjunction with trauma and represent the most common tumour disease in horses and other equids, including donkeys. In face of a sarcoid outbreak involving 12 of 111 donkeys and mules at the 'Rifugio degli Asinelli', a subsidiary charity organization of The Donkey Sanctuary, non-invasively collected sample material including crusts, dandruff, swabs and hair roots was collected from sarcoid-affected and 26 healthy donkeys, as well as dandruff from a grooming kit and tabanids caught from or in the vicinity of sarcoid patients. In addition five previously collected sarcoids stored in formalin were provided. DNA isolated from collected material was tested for the presence of the BPV1/2 E5 oncogene using PCR. Positive samples were further analysed by E2/E4 and LCR PCR and amplicon sequencing to determine a possible common source of infection via comparative alignment of intralesional BPV1/2 gene variants. IC/PCR was used to assess sample aliquots for the presence of BPV1/2 virions, and IHC to analyse five tumours for BPV1 E5 and L1 protein expression. All sarcoid-affected donkeys, two of 55 tabanids and dandruff from a curry comb tested positive for BPV1/2 E5, yet negative by IC/PCR. Healthy animals were BPV1/2-free. IHC revealed different levels of intralesional E5 and L1 expression. A series of BPV1 E5, E2, and LCR variants and BPV2 E5 were detected from donkeys, indicating that they had accidently developed sarcoids at about the same time rather than having acquired disease from each other.


Assuntos
Papillomavirus Bovino 1/isolamento & purificação , Surtos de Doenças/veterinária , Equidae/virologia , Infecções por Papillomavirus/veterinária , Animais , Papillomavirus Bovino 1/genética , DNA Viral/análise , DNA Viral/genética , Feminino , Fibroblastos/patologia , Fibroblastos/virologia , Itália/epidemiologia , Masculino , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA