Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Anal Chem ; 96(23): 9721-9728, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38807522

RESUMO

Can reversed-phase peptide retention be the same for C8 and C18 columns? or increase for otherwise identical columns with a smaller surface area? Can replacing trifluoroacetic acid (TFA) with formic acid (FA) improve the peak shape? According to our common understanding of peptide chromatography, absolutely not. Surprisingly, a thorough comparison of the peptide separation selectivity of 100 and 120 Šfully porous C18 sorbents to maximize the performance of our in-house proteomics LC-MS/MS setup revealed an unexpectedly higher peptide retentivity for a wider pore packing material, despite it having a smaller surface area. Concurrently, the observed increase in peptide retention─which drives variation in separation selectivity between 100 and 120 Špore size materials─was more pronounced for smaller peptides. These findings contradict the central dogmas that underlie the development of all peptide RP-HPLC applications: (i) a larger surface area leads to higher retention and (ii) increasing the pore size should benefit the retention of larger analytes. Based on our intriguing findings, we compared reversed-phase high-performance liquid chromatography peptide retention for a total of 20 columns with pore sizes between 60 and 300 Šusing FA- and TFA-based eluents. Our results unequivocally attest that the larger size of ion pairs in FA- vs TFA-based eluents leads to the observed impact on selectivity and peptide retention. For FA, peptide retention peaks at 200 Špore size, compared to between 120 and 200 Šfor TFA. However, the decrease in retention for narrow-pore particles is more profound in FA. Our findings suggest that common assumptions about analyte size and accessible surface area should be revisited for ion-pair RP separation of small peptides, typical for proteomic applications that are predominantly applying FA eluents. Hybrid silica-based materials with pore sizes of 130-200 Šshould be specifically targeted for bottom-up proteomic applications to obtain both superior peak shape and peptide retentivity. This challenging task of attaining the best RPLC column for proteomics calls for closer collaboration between LC column manufacturers and proteomic LC specialists.


Assuntos
Cromatografia de Fase Reversa , Peptídeos , Proteômica , Proteômica/métodos , Peptídeos/química , Peptídeos/análise , Peptídeos/isolamento & purificação , Porosidade , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Tamanho da Partícula , Ácido Trifluoracético/química , Propriedades de Superfície
2.
Mol Cell Biol ; 44(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270191

RESUMO

The ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells. We demonstrate that Otub1 interacts with the γ-subunit of the heterotrimeric G protein, Gng2, and modulates its ubiquitylation status, thereby controlling Gng2 stability. Proximal mapping of Gng2 revealed an enrichment in partners associated with chemokine signaling, actin cytoskeleton and cell migration. In line with these findings, we show that Otub1-deficient B cells exhibit greater Ca2+ mobilization, F-actin polymerization and chemotactic responsiveness to Cxcl12, Cxcl13 and S1P in vitro, which manifests in vivo as altered localization of B cells within the spleen. Together, our data establishes Otub1 as a novel regulator of G-protein coupled receptor signaling in B cells, regulating their differentiation and positioning in the spleen.


Assuntos
Quimiotaxia de Leucócito , Enzimas Desubiquitinantes , Baço , Ubiquitina , Animais , Camundongos , Enzimas Desubiquitinantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Baço/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Cisteína Endopeptidases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Linfócitos B/metabolismo , Quimiotaxia de Leucócito/genética
3.
Cell Metab ; 35(12): 2119-2135.e5, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37913768

RESUMO

The rising pancreatic cancer incidence due to obesity and type 2 diabetes is closely tied to hyperinsulinemia, an independent cancer risk factor. Previous studies demonstrated reducing insulin production suppressed pancreatic intraepithelial neoplasia (PanIN) pre-cancerous lesions in Kras-mutant mice. However, the pathophysiological and molecular mechanisms remained unknown, and in particular it was unclear whether hyperinsulinemia affected PanIN precursor cells directly or indirectly. Here, we demonstrate that insulin receptors (Insr) in KrasG12D-expressing pancreatic acinar cells are dispensable for glucose homeostasis but necessary for hyperinsulinemia-driven PanIN formation in the context of diet-induced hyperinsulinemia and obesity. Mechanistically, this was attributed to amplified digestive enzyme protein translation, triggering of local inflammation, and PanIN metaplasia in vivo. In vitro, insulin dose-dependently increased acinar-to-ductal metaplasia formation in a trypsin- and Insr-dependent manner. Collectively, our data shed light on the mechanisms connecting obesity-driven hyperinsulinemia and pancreatic cancer development.


Assuntos
Carcinoma in Situ , Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Insulinas , Neoplasias Pancreáticas , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Inflamação/metabolismo , Hiperinsulinismo/complicações , Metaplasia/metabolismo , Metaplasia/patologia , Obesidade/metabolismo , Insulinas/metabolismo
4.
Anal Chem ; 95(39): 14634-14642, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37739932

RESUMO

We have systematically evaluated the chromatographic behavior of post-translationally/chemically modified peptides using data spanning over 70 of the most relevant modifications. These retention properties were measured for standard bottom-up proteomic settings (fully porous C18 separation media, 0.1% formic acid as ion-pairing modifier) using collections of modified/nonmodified peptide pairs. These pairs were generated by spontaneous degradation, chemical or enzymatic treatment, analysis of synthetic peptides, or the cotranslational incorporation of noncanonical proline analogues. In addition, these measurements were validated using external data acquired for synthetic peptides and enzymatically induced citrullination. Working in units of hydrophobicity index (HI, % ACN) and evaluating the average retention shifts (ΔHI) represent the simplest approach to describe the effect of modifications from a didactic point of view. Plotting HI values for modified (y-axis) vs nonmodified (x-axis) counterparts generates unique slope and intercept values for each modification defined by the chemistry of the modifying moiety: its hydrophobicity, size, pKa of ionizable groups, and position of the altered residue. These composition-dependent correlations can be used for coarse incorporation of PTMs into models for prediction of peptide retention. More accurate predictions would require the development of specific sequence-dependent algorithms to predict ΔHI values.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Peptídeos/química , Cromatografia de Fase Reversa/métodos
5.
Breast Cancer Res ; 25(1): 99, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608351

RESUMO

BACKGROUND: Obesity increases breast cancer risk and breast cancer-specific mortality, particularly for people with estrogen receptor (ER)-positive tumors. Body mass index (BMI) is used to define obesity, but it may not be the best predictor of breast cancer risk or prognosis on an individual level. Adult weight gain is an independent indicator of breast cancer risk. Our previous work described a murine model of obesity, ER-positive breast cancer, and weight gain and identified fibroblast growth factor receptor (FGFR) as a potential driver of tumor progression. During adipose tissue expansion, the FGF1 ligand is produced by hypertrophic adipocytes as a stimulus to stromal preadipocytes that proliferate and differentiate to provide additional lipid storage capacity. In breast adipose tissue, FGF1 production may stimulate cancer cell proliferation and tumor progression. METHODS: We explored the effects of FGF1 on ER-positive endocrine-sensitive and resistant breast cancer and compared that to the effects of the canonical ER ligand, estradiol. We used untargeted proteomics, specific immunoblot assays, gene expression profiling, and functional metabolic assessments of breast cancer cells. The results were validated in tumors from obese mice and breast cancer datasets from women with obesity. RESULTS: FGF1 stimulated ER phosphorylation independently of estradiol in cells that grow in obese female mice after estrogen deprivation treatment. Phospho- and total proteomic, genomic, and functional analyses of endocrine-sensitive and resistant breast cancer cells show that FGF1 promoted a cellular phenotype characterized by glycolytic metabolism. In endocrine-sensitive but not endocrine-resistant breast cancer cells, mitochondrial metabolism was also regulated by FGF1. Comparison of gene expression profiles indicated that tumors from women with obesity shared hallmarks with endocrine-resistant breast cancer cells. CONCLUSIONS: Collectively, our data suggest that one mechanism by which obesity and weight gain promote breast cancer progression is through estrogen-independent ER activation and cancer cell metabolic reprogramming, partly driven by FGF/FGFR. The first-line treatment for many patients with ER-positive breast cancer is inhibition of estrogen synthesis using aromatase inhibitors. In women with obesity who are experiencing weight gain, locally produced FGF1 may activate ER to promote cancer cell metabolic reprogramming and tumor progression independently of estrogen.


Assuntos
Neoplasias da Mama , Fator 1 de Crescimento de Fibroblastos , Receptores de Estrogênio , Animais , Feminino , Camundongos , Estradiol , Estrogênios , Fator 1 de Crescimento de Fibroblastos/metabolismo , Ligantes , Obesidade/complicações , Proteômica , Receptores de Estrogênio/genética , Aumento de Peso , Neoplasias da Mama/metabolismo
6.
Mol Cancer Ther ; 22(2): 192-204, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722142

RESUMO

Aberrant cell-cycle progression is characteristic of melanoma, and CDK4/6 inhibitors, such as palbociclib, are currently being tested for efficacy in this disease. Despite the promising nature of CDK4/6 inhibitors, their use as single agents in melanoma has shown limited clinical benefit. Herein, we discovered that treatment of tumor cells with palbociclib induces the phosphorylation of the mRNA translation initiation factor eIF4E. When phosphorylated, eIF4E specifically engenders the translation of mRNAs that code for proteins involved in cell survival. We hypothesized that cancer cells treated with palbociclib use upregulated phosphorylated eIF4E (phospho-eIF4E) to escape the antitumor benefits of this drug. Indeed, we found that pharmacologic or genetic disruption of MNK1/2 activity, the only known kinases for eIF4E, enhanced the ability of palbociclib to decrease clonogenic outgrowth. Moreover, a quantitative proteomics analysis of melanoma cells treated with combined MNK1/2 and CDK4/6 inhibitors showed downregulation of proteins with critical roles in cell-cycle progression and mitosis, including AURKB, TPX2, and survivin. We also observed that palbociclib-resistant breast cancer cells have higher basal levels of phospho-eIF4E, and that treatment with MNK1/2 inhibitors sensitized these palbociclib-resistant cells to CDK4/6 inhibition. In vivo we demonstrate that the combination of MNK1/2 and CDK4/6 inhibition significantly increases the overall survival of mice compared with either monotherapy. Overall, our data support MNK1/2 inhibitors as promising drugs to potentiate the antineoplastic effects of palbociclib and overcome therapy-resistant disease.


Assuntos
Neoplasias da Mama , Melanoma , Inibidores de Proteínas Quinases , Animais , Camundongos , Fator de Iniciação 4E em Eucariotos , Melanoma/tratamento farmacológico , Piperazinas/farmacologia , Piridinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia
7.
Methods Mol Biol ; 2628: 353-364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781797

RESUMO

Mass spectrometry (MS)-based protein quantitation is an attractive means for research and diagnostics due to its high specificity, precision, sensitivity, versatility, and the ability to develop multiplexed assays for the "absolute" quantitation of virtually any protein target. However, due to the large dynamic range of protein concentrations in blood, high abundance proteins in blood plasma hinder the detectability and quantification of lower-abundance proteins which are often relevant in the context of different diseases. Here we outline a streamlined method involving offline high-pH reversed-phase fractionation of human plasma samples followed by the quantitative analysis of specific fractions using nanoLC-parallel reaction monitoring (PRM) on a Q Exactive Plus mass spectrometer for peptide detection and quantitation with increased sensitivity. Because we use a set of synthetic peptide standards, we can more efficiently determine the precise retention times of the target peptides in the first-dimensional separation and specifically collect eluting fractions of interest for the subsequent targeted MS quantitation, making the analysis faster and easier. An eight-point standard curve was generated by serial dilution of a mixture of previously validated unlabeled ("light") synthetic peptides of interest at known concentrations. The corresponding heavy stable-isotope-labeled standard (SIS) analogues were used as normalizers to account for losses during sample processing and analysis. Using this method, we were able to improve the sensitivity of plasma protein quantitation by up to 50-fold compared to using nanoLC-PRM alone.


Assuntos
Isótopos , Peptídeos , Humanos , Espectrometria de Massas/métodos , Peptídeos/química , Proteínas Sanguíneas/química , Fracionamento Químico
8.
Curr Opin Chem Biol ; 73: 102253, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36689818

RESUMO

Platelets are small anucleate cell fragments (2-4 µm in diameter) in the blood, which play an essential role in thrombosis and hemostasis. Genetic or acquired platelet dysfunctions are linked to bleeding, increased risk of thromboembolic events and cardiovascular diseases. Advanced proteomic approaches may pave the way to a better understanding of the roles of platelets in hemostasis, and pathophysiological processes such as inflammation, metastatic spread and thrombosis. Further insights into the molecular biology of platelets are crucial to aid drug development and identify diagnostic markers of platelet activation. Platelet activation is known to be an extremely rapid process and involves multiple post-translational mechanisms at sub second time scale, including proteolysis and phosphorylation. Multi-omics technologies and biochemical approaches can be exploited to precisely probe and define these posttranslational pathways. Notably, the absence of a nucleus in platelets significantly reduces the number of present proteins, simplifying mass spectrometry-based proteomics and metabolomics approaches.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/metabolismo , Plaquetas/patologia , Proteômica , Multiômica , Ativação Plaquetária , Trombose/metabolismo , Trombose/patologia
9.
Methods Mol Biol ; 2614: 261-271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587130

RESUMO

The extracellular matrix (ECM) is a molecular scaffold mainly comprising fibrous proteins, glycoproteins, proteoglycans, and polysaccharides. Aside from acting as a structural support, the ECM's composition dictates cell-matrix interactions at the biochemical and biophysical level. In the context of cancer, the ECM is a critical component of the tumor microenvironment (TME) and dysregulation of its deposition and remodelling has been shown to promote tumor onset, progression, and metastasis. Here, we describe a robust protocol for the isolation and subsequent proteomic analysis of the ECM of murine mammary glands, for downstream assays studying the role of the ECM in breast cancer. The protocol yields sufficient protein amounts to enable not only the global quantitation of protein expression but furthermore the enrichment and quantitative analysis of post-translationally modified peptides to study aberrant signalling.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Camundongos , Animais , Humanos , Feminino , Proteômica , Matriz Extracelular/metabolismo , Proteoglicanas/metabolismo , Neoplasias da Mama/patologia , Proteínas da Matriz Extracelular/metabolismo , Microambiente Tumoral
10.
Biomedicines ; 10(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36289705

RESUMO

Dominant VCP-mutations cause a variety of neurological manifestations including inclusion body myopathy with early-onset Paget disease and frontotemporal dementia 1 (IBMPFD). VCP encodes a ubiquitously expressed multifunctional protein that is a member of the AAA+ protein family, implicated in multiple cellular functions ranging from organelle biogenesis to ubiquitin-dependent protein degradation. The latter function accords with the presence of protein aggregates in muscle biopsy specimens derived from VCP-patients. Studying the proteomic signature of VCP-mutant fibroblasts, we identified a (pathophysiological) increase of FYCO1, a protein involved in autophagosome transport. We confirmed this finding applying immunostaining also in muscle biopsies derived from VCP-patients. Treatment of fibroblasts with arimoclomol, an orphan drug thought to restore physiologic cellular protein repair pathways, ameliorated cellular cytotoxicity in VCP-patient derived cells. This finding was accompanied by increased abundance of proteins involved in immune response with a direct impact on protein clearaqnce as well as by elevation of pro-survival proteins as unravelled by untargeted proteomic profiling. Hence, the combined results of our study reveal a dysregulation of FYCO1 in the context of VCP-etiopathology, highlight arimoclomol as a potential drug and introduce proteins targeted by the pre-clinical testing of this drug in fibroblasts.

11.
Matrix Biol ; 111: 264-288, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35842012

RESUMO

The extracellular matrix (ECM) plays critical roles in breast cancer development. Whether ECM composition is regulated by the phosphorylation of eIF4E on serine 209, an event required for tumorigenesis, has not been explored. Herein, we used proteomics and mouse modeling to investigate the impact of mutating serine 209 to alanine on eIF4E (i.e., S209A) on mammary gland (MG) ECM. The proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD028953. We discovered that S209A knock-in mice, expressing a non-phosphorylatable form of eIF4E, have less collagen-I deposition in native and tumor-bearing MGs, leading to altered tumor cell invasion. Additionally, phospho-eIF4E deficiency impacts collagen topology; fibers at the tumor-stroma boundary in phospho-eIF4E-deficient mice run parallel to the tumor edge but radiate outwards in wild-type mice. Finally, a phospho-eIF4E-deficient tumor microenvironment resists anti-PD-1 therapy-induced collagen deposition, correlating with an increased anti-tumor response to immunotherapy. Clinically, we showed that collagen-I and phospho-eIF4E are positively correlated in human breast cancer samples, and that stromal phospho-eIF4E expression is influenced by tumor proximity. Together, our work defines the importance of phosphorylation of eIF4E on S209 as a regulator of MG collagen architecture in the tumor microenvironment, thereby positioning phospho-eIF4E as a therapeutic target to augment response to therapy.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Animais , Neoplasias da Mama/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo , Camundongos , Fosforilação , Proteômica , Serina/metabolismo , Microambiente Tumoral
12.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457260

RESUMO

Most human tumor tissues that are obtained for pathology and diagnostic purposes are formalin-fixed and paraffin-embedded (FFPE). To perform quantitative proteomics of FFPE samples, paraffin has to be removed and formalin-induced crosslinks have to be reversed prior to proteolytic digestion. A central component of almost all deparaffinization protocols is xylene, a toxic and highly flammable solvent that has been reported to negatively affect protein extraction and quantitative proteome analysis. Here, we present a 'green' xylene-free protocol for accelerated sample preparation of FFPE tissues based on paraffin-removal with hot water. Combined with tissue homogenization using disposable micropestles and a modified protein aggregation capture (PAC) digestion protocol, our workflow enables streamlined and reproducible quantitative proteomic profiling of FFPE tissue. Label-free quantitation of FFPE cores from human ductal breast carcinoma in situ (DCIS) xenografts with a volume of only 0.79 mm3 showed a high correlation between replicates (r2 = 0.992) with a median %CV of 16.9%. Importantly, this small volume is already compatible with tissue micro array (TMA) cores and core needle biopsies, while our results and its ease-of-use indicate that further downsizing is feasible. Finally, our FFPE workflow does not require costly equipment and can be established in every standard clinical laboratory.


Assuntos
Parafina , Proteômica , Biópsia com Agulha de Grande Calibre , Formaldeído , Humanos , Inclusão em Parafina , Proteoma/metabolismo , Proteômica/métodos , Fixação de Tecidos
13.
Mol Cell Proteomics ; 21(5): 100212, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182769

RESUMO

Plasma is an important biofluid for clinical research and diagnostics. In the clinic, unpredictable delays-from minutes to hours-between blood collection and plasma generation are often unavoidable. These delays can potentially lead to protein degradation and modification and might considerably affect intact protein measurement methods such as sandwich enzyme-linked immunosorbent assays that bind proteins on two epitopes to increase specificity, thus requiring largely intact protein structures. Here, we investigated, using multiple reaction monitoring mass spectrometry (MRM-MS), how delays in plasma processing affect peptide-centric "bottom-up" proteomics. We used validated assays for proteotypic peptide surrogates of 270 human proteins to analyze plasma generated after whole blood had been kept at room temperature from 0 to 40 h to mimic delays that occur in the clinic. Moreover, we evaluated the impact of different plasma-thawing conditions on MRM-based plasma protein quantitation. We demonstrate that >90% of protein concentration measurements were unaffected by the thawing procedure and by up to 40-h delayed plasma generation, reflected by relative standard deviations (RSDs) of <30%. Of the 159 MRM assays that yielded quantitative results in 60% of the measured time points, 139 enabled a stable protein quantitation (RSD <20%), 14 showed a slight variation (RSD 20-30%), and 6 appeared unstable/irreproducible (RSD > 30%). These results demonstrate the high robustness and thus the potential for MRM-based plasma-protein quantitation to be used in a clinical setting. In contrast to enzyme-linked immunosorbent assay, peptide-based MRM assays do not require intact three-dimensional protein structures for an accurate and precise quantitation of protein concentrations in the original sample.


Assuntos
Proteínas Sanguíneas , Proteômica , Proteínas Sanguíneas/análise , Ensaio de Imunoadsorção Enzimática , Humanos , Espectrometria de Massas/métodos , Peptídeos/análise , Proteômica/métodos
14.
Analyst ; 146(21): 6566-6575, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34585690

RESUMO

The PI3-kinase/AKT/mTOR pathway plays a central role in cancer signaling. While p110α is the catalytic α-subunit of PI3-kinase and a major drug target, PTEN is the main negative regulator of the PI3-kinase/AKT/mTOR pathway. PTEN is often down-regulated in cancer, and there are conflicting data on PTEN's role as breast cancer biomarker. PTEN and p110α protein expression in tumors is commonly analyzed by immunohistochemistry, which suffers from poor multiplexing capacity, poor standardization, and antibody crossreactivity, and which provides only semi-quantitative data. Here, we present an automated, and standardized immuno-matrix-assisted laser desorption/ionization mass spectrometry (iMALDI) assay that allows precise and multiplexed quantitation of PTEN and p110α concentrations, without the limitations of immunohistochemistry. Our iMALDI assay only requires a low-cost benchtop MALDI-TOF mass spectrometer, which simplifies clinical translation. We validated our assay's precision and accuracy, with simultaneous enrichment of both target proteins not significantly affecting the precision and accuracy of the quantitation when compared to the PTEN- and p110α-singleplex iMALDI assays (<15% difference). The multiplexed assay's linear range is from 0.6-20 fmol with accuracies of 90-112% for both target proteins, and the assay is free of matrix-related interferences. The inter-day reproducibility over 5-days was high, with an overall CV of 9%. PTEN and p110α protein concentrations can be quantified down to 1.4 fmol and 0.6 fmol per 10 µg of total tumor protein, respectively, in various tumor tissue samples, including fresh-frozen breast tumors and colorectal cancer liver metastases, and patient-derived xenograft (PDX) tumors.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Linhagem Celular Tumoral , Feminino , Humanos , Lasers , Proteínas de Neoplasias , PTEN Fosfo-Hidrolase , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Anal Chem ; 93(31): 10816-10824, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324311

RESUMO

The tumor suppressor PTEN is the main negative regulator of PI3K/AKT/mTOR signaling and is commonly found downregulated in breast cancer (BC). Conflicting data from conventional immunoassays such as immunohistochemistry (IHC) has sparked controversy about PTEN's role as a prognostic and predictive biomarker in BC, which can be largely attributed to the lack of specificity, sensitivity, and interlaboratory standardization. Here, we present a fully standardized, highly sensitive, robust microflow immuno-MRM (iMRM) assay that enables precise quantitation of PTEN concentrations in cells and fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) tissues, down to 0.1 fmol/10 µg of extracted protein, with high interday and intraday precision (CV 6.3%). PTEN protein levels in BC PDX samples that were determined by iMRM correlate well with semiquantitative IHC and WB data. iMRM, however, allowed the precise quantitation of PTEN-even in samples that were deemed to be PTEN negative by IHC or western blot (WB)-while requiring substantially less tumor tissue than WB. This is particularly relevant because the extent of PTEN downregulation in tumors has been shown to correlate with severity. Our standardized and robust workflow includes an 11 min microflow LC-MRM analysis on a triple-quadrupole MS and thus provides a much needed tool for the study of PTEN as a potential biomarker for BC.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Imuno-Histoquímica , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases
16.
Brain ; 144(8): 2427-2442, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33792664

RESUMO

Marinesco-Sjögren syndrome is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms which are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between Marinesco-Sjögren syndrome and the INPP5K phenotype. We applied unbiased proteomic profiling on cells derived from Marinesco-Sjögren syndrome and INPP5K patients and identified alterations in d-3-PHGDH as a common molecular feature. d-3-PHGDH modulates the production of l-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with Marinesco-Sjögren syndrome and INPP5K disease. As l-serine administration represents a promising therapeutic strategy for d-3-PHGDH patients, we tested the effect of l-serine in generated sil1, phgdh and inpp5k a+b zebrafish models, which showed an improvement in their neuronal phenotype. Thus, our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Inositol Polifosfato 5-Fosfatases/genética , Mutação , Fenótipo , Fosfoglicerato Desidrogenase/genética , Degenerações Espinocerebelares/genética , Adolescente , Adulto , Animais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Proteômica , Degenerações Espinocerebelares/patologia , Peixe-Zebra
17.
Blood ; 138(7): 544-556, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33735912

RESUMO

Bruton tyrosine kinase (BTK) inhibitors are highly active drugs for the treatment of chronic lymphocytic leukemia (CLL). To understand the response to BTK inhibitors on a molecular level, we performed (phospho)proteomic analyses under ibrutinib treatment. We identified 3466 proteins and 9184 phosphopeptides (representing 2854 proteins) in CLL cells exhibiting a physiological ratio of phosphorylated serines (pS), threonines (pT), and tyrosines (pY) (pS:pT:pY). Expression of 83 proteins differed between unmutated immunoglobulin heavy-chain variable region (IGHV) CLL (UM-CLL) and mutated IGHV CLL (M-CLL). Strikingly, UM-CLL cells showed higher basal phosphorylation levels than M-CLL samples. Effects of ibrutinib on protein phosphorylation levels were stronger in UM-CLL, especially on phosphorylated tyrosines. The differentially regulated phosphopeptides and proteins clustered in pathways regulating cell migration, motility, cytoskeleton composition, and survival. One protein, myristoylated alanine-rich C-kinase substrate (MARCKS), showed striking differences in expression and phosphorylation level in UM-CLL vs M-CLL. MARCKS sequesters phosphatidylinositol-4,5-bisphosphate, thereby affecting central signaling pathways and clustering of the B-cell receptor (BCR). Genetically induced loss of MARCKS significantly increased AKT signaling and migratory capacity. CD40L stimulation increased expression of MARCKS. BCR stimulation induced phosphorylation of MARCKS, which was reduced by BTK inhibitors. In line with our in vitro findings, low MARCKS expression is associated with significantly higher treatment-induced leukocytosis and more pronounced decrease of nodal disease in patients with CLL treated with acalabrutinib.


Assuntos
Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Movimento Celular/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Proteínas de Neoplasias , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos
18.
ACS Pharmacol Transl Sci ; 3(6): 1304-1309, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33344903

RESUMO

Bevacizumab is a monoclonal antibody which targets vascular endothelial growth factor A (VEGF-A) and is used to treat various cancers and recently COVID-19. The dosage recommendations for bevacizumab are determined on the basis of body weight, and the drug is administered after defined time intervals, when it is presumed to still be above its minimum effective serum concentration. Interindividual and disease-stage-related variations in bevacizumab catabolism, however, can affect the proper dosing of patients, resulting in plasma concentrations which may not be within the optimal therapeutic window for the drug. Therapeutic drug monitoring (TDM) enables the assessment of patients' serum concentrations and allows personalized dosing which has the potential to improve efficacy and reduce side effects. While TMD is often performed using ligand-based assays, mass spectrometry (MS)-based TDM offers improved specificity. Here, we present a robust multiple reaction monitoring (MRM)-MS-based TDM method for the precise quantification of bevacizumab plasma concentrations, based on the controlled oxidation of the methionine-containing peptide, STAYLQMNSLR. The assay shows good linearity (r 2 = 0.9951), robustness, and precision (CVs < 20%) for the quantification of bevacizumab, with a lower limit of quantification (S/N > 10) of 1.8 µg/mL of plasma, without the need for enrichment and requiring less than 1 µL of plasma and less than 6 h from sampling to result.

19.
Anal Chem ; 92(20): 13672-13676, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32865986

RESUMO

We introduce STAMPS, a pathway-centric web service for the development of targeted proteomics assays. STAMPS guides the user by providing several intuitive interfaces for a rapid and simplified method design. Applying our curated framework to signaling and metabolic pathways, we reduced the average assay development time by a factor of ∼150 and revealed that the insulin signaling is actively controlled by protein abundance changes in insulin-sensitive and -resistance states. Although at the current state STAMPS primarily contains mouse data, it was designed for easy extension with additional organisms.


Assuntos
Redes e Vias Metabólicas , Proteômica/métodos , Transdução de Sinais , Animais , Cromatografia Líquida de Alta Pressão , Bases de Dados de Proteínas , Insulina/metabolismo , Redes e Vias Metabólicas/genética , Camundongos , Peptídeos/análise , Transdução de Sinais/genética , Espectrometria de Massas em Tandem
20.
Anal Chim Acta ; 1128: 140-148, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32825898

RESUMO

The quantitation of metanephrine (MN), normetanephrine (NMN), and 3-methoxytyramine (3-MT) - referred to as metanephrines -- by LC-MS/MS is the gold-standard for screening for pheochromocytoma and paragangliomas (PPGLs), tumours of the adrenal gland and the peripheral nervous system. An assay for metanephrines from dried blood spots (DBSs) would be of high clinical utility as it simplifies sample collection, enables remote sampling, and could increase compliance with the clinical recommendation for supine sampling. Moreover, DBS sampling facilitates the measurement of blood-derived metanephrines in pediatric patients - where DBSs are well-established - in order to diagnose neuroblastomas. Here, we adapted an established derivatization-based LC-MRM-MS assay for plasma catecholamines, and optimized the sample extraction, LC, and MS parameters to produce a fast, sensitive, and robust method for the measurement of metanephrines from DBSs, including 3-methoxytyramine. The DBS samples were excised, derivatized with phenyl isothiocyanate (PITC) on-spot, extracted, and measured by LC-MRM-MS. To validate assay suitability and performance, we assessed the linearity, precision, accuracy, recovery, and matrix effects of the method, and determined the stability of metanephrines in DBSs under different storage conditions. Assay performance for NMN, MN, and 3-MT was sufficient for quantitation from a single DBS within a linear range from 40 to 2000 pg/mL. MN and NMN were stable in DBSs for 2 weeks, whereas 3-MT was stable for one week regardless of storage temperature. Altogether, this work represents the first quantitative LC-MS/MS method for metanephrines from DBSs and provides a novel opportunity for the diagnosis of PPGLs and neuroblastomas in the future.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/diagnóstico , Criança , Cromatografia Líquida , Humanos , Metanefrina , Paraganglioma/diagnóstico , Feocromocitoma/diagnóstico , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA