Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 11(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432887

RESUMO

Flavonoids are characterized as the low molecular weight polyphenolic compounds universally distributed in planta. They are a chemically varied group of secondary metabolites with a broad range of biological activity. The increasing amount of evidence has demonstrated the various physiological functions of flavonoids in stress response. In this paper, we provide a brief introduction to flavonoids' biochemistry and biosynthesis. Then, we review the recent findings on the alternation of flavonoid content under different stress conditions to come up with an overall picture of the mechanism of involvement of flavonoids in plants' response to various abiotic stresses. The participation of flavonoids in antioxidant systems, flavonoid-mediated response to different abiotic stresses, the involvement of flavonoids in stress signaling networks, and the physiological response of plants under stress conditions are discussed in this review. Moreover, molecular and genetic approaches to tailoring flavonoid biosynthesis and regulation under abiotic stress are addressed in this review.

2.
PLoS One ; 17(4): e0265654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421099

RESUMO

The appraisal of foliar treatment of iron (Fe) and salicylic acid (SA) on plant under artificial magnetism is very crucial in understanding its impact on growth and development of plants. The present study was designed to document the potential role of Fe and SA on pea (Pisum sativum L.) Matore variety exposed to different magnetism treatments (geomagnetism and artificial magnetism). Thus a pot experiment was conducted using Completely Randomized Design under factorial with three replicates. Various artificial magnetic treatment were applied in pots prior to sowing. Further, 15 days germinated pea seedlings were foliarly supplemented with 250 ppm Fe and 250µM SA, moreover after 20 days of foliar fertilization plants were harvested to analyze and record various morpho-physiological attributes. Data elucidate significant variations in pea plants among different treatments. Artificial magnetism treatments in combination with foliar application of Fe and SA significantly improved various growth attributes (root and shoot length, fresh and dry weights of root and shoot, leaf area), photosynthetic pigments (Chl a, b and carotenoids) and the contents of soluble sugars. However, oxidative stress (H2O2 and MDA) enhanced under different magnetism treatment but foliar application of Fe and SA hampered the production of reactive oxygen species thereby limiting the concentration of H2O2 and MDA in plant tissues. Furthermore the accumulation of nutrients (iron, potassium and nitrate) profoundly increased under artificial magnetism treatment specifically under Fe and SA foliar treatment excluding nitrate where Fe foliar treatment tend to limit nitrate in plant. Consequently, the present research interestingly highlights progressive role of Fe and SA foliar treatment on pea plants under artificial magnetism. Thus, foliar supplementation may be suggested for better growth and development of plants combined with magnetic treatments.


Assuntos
Pisum sativum , Ácido Salicílico , Peróxido de Hidrogênio , Ferro/farmacologia , Nitratos , Ácido Salicílico/farmacologia
3.
PLoS One ; 17(1): e0262309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025916

RESUMO

The amount of soil contaminated with heavy metal increases due to urbanization, industrialization, and anthropogenic activities. Quinoa is considered a useful candidate in the remediation of such soil. In this pot experiment, the phytoextraction capacity of quinoa lines (A1, A2, A7, and A9) against different nickel (Ni) concentrations (0, 50, and 100 mg kg-1) were investigated. Required Ni concentrations were developed in polythene bags filled with sandy loam soil using nickel nitrate salt prior to two months of sowing and kept sealed up to sowing. Results showed that translocation of Ni increased from roots to shoots with an increase in soil Ni concentration in all lines. A2 line accumulated high Ni in leaf compared to the root as depicted by translocation factor 3.09 and 3.21 when grown at soil having 50 and 100 Ni mg kg-1, respectively. While, in the case of root, A7 accumulated high Ni followed by A9, A1, and A2, respectively. There was a 5-7% increased seed yield by 50 mg kg-1 Ni in all except A1 compared to control. However, growth and yield declined with a further increase in Ni level. The maximum reduction in yield was noticed in A9, which was strongly linked with poor physiological performance, e.g., chlorophyll a, b, and phenolic contents. Ni concentrations in the seed of all lines were within the permissible value set (67 ppm) by FAO/WHO. The result of the present study suggests that quinoa is a better accumulator of Ni. This species can provide the scope of decontamination of heavy metal polluted soil. The screened line can be used for future quinoa breeding programs for bioremediation and phytoextraction purpose.


Assuntos
Chenopodium quinoa/metabolismo , Recuperação e Remediação Ambiental/métodos , Níquel/metabolismo , Biodegradação Ambiental , Cádmio/análise , Metais Pesados/análise , Níquel/análise , Solo , Poluentes do Solo/análise
4.
Front Nutr ; 8: 779595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966772

RESUMO

Field-based experiments were conducted during wheat cultivation seasons of 2017-2018 and 2018-2019 to minimize the impact of hidden hunger (micronutrient deficiencies) through agronomic biofortification of two wheat cultivars with zinc and iron. Two spring-planted bread wheat cultivars: Zincol-16 (Zn-efficient) and Anaj-17 (Zn-inefficient with high-yield potential) were treated with either zinc (10 kg/ha), iron (12 kg/ha), or their combination to study their effect on some growth attributes (plant height, tillers, and spike length, etc.,), productivity, and quality. No application of zinc and iron or their combinations served as the control. Maximum Zn and Fe contents of grains were improved by sole application of Zn and Fe, respectively. A higher concentration of Ca in grains was observed by the combined application of Zn and Fe. Starch contents were found maximum by sole application of Fe. Sole or combined application of Zn and Fe reduced wet gluten contents. Maximum proteins were recorded in Anaj-17 under control treatments. Zincol-16 produced maximum ionic concentration, starch contents, and wet gluten as compared to Anaj-17. Yield and growth attributes were also significantly (p < 0.05) improved by combined application as compared to the sole application of Zn or Fe. The combined application also produced the highest biological and grain yield with a maximum harvest index. Cultivar Anaj-17 was found more responsive regarding growth and yield attributes comparatively. The findings of the present study showed that the combined application of Zn and Fe produced good quality grains (more Zn, Fe, Ca, starch, and less gluten concentrations) with a maximum productivity of bread wheat cultivars.

5.
Front Plant Sci ; 12: 809183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154205

RESUMO

Cadmium (Cd+2) is a potential and widespread toxic environmental pollutant, mainly derived from a rapid industrial process that has inhibitory effects on growth, physiological, and biochemical attributes of various plant species, including medicinal plants such as Silybum marianum L. Gaertn commonly known as milk thistle. Plant signaling molecules, when applied exogenously, help to enhance/activate endogenous biosynthesis of potentially important signaling molecules and antioxidants that boost tolerance against various abiotic stresses, e.g., heavy metal stress. The present study documented the protective role of salicylic acid (SA;0.25 µM) and hydrogen peroxide (H2O2; 10 µM) priming, foliar spray, and combinational treatments in reducing Cd+2 toxicity (500 µM) in milk thistle grown at two diverse ecological zones of Balochistan Province of Pakistan i.e., Quetta (Qta) and Turbat (Tbt). The morpho-physiological and biochemical attributes of milk thistle were significantly affected by Cd+2 toxicity; however, priming and foliar spray of SA and H2O2 significantly improved the growth attributes (root/shoot length, leaf area, and root/shoot fresh and dry weight), photosynthetic pigments (Chl a, b, and carotenoids) and secondary metabolites (Anthocyanin, Soluble phenolics, and Tannins) at both altitudes by suppressing the negative impact of Cd+2. However, the oxidative damage parameters, i.e., MDA and H2O2, decreased astonishingly under the treatment of signaling molecules, thereby protecting membrane integrity under Cd+2 stress. The morphological variations were profound at the low altitude (Tbt) as compared to the high altitude (Qta). Interestingly, the physiological and biochemical attributes at both altitudes improved under SA and H2O2 treatments, thus hampered the toxic effect of Cd+2. These signaling compounds enhanced tolerance of plants under heavy metal stress conditions with the consideration of altitudinal, and ambient temperature variations remain to be the key concerns.

6.
Biology (Basel) ; 9(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708065

RESUMO

Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants' development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.

7.
Braz. arch. biol. technol ; 63: e20200072, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1142498

RESUMO

Abstract The response of two local maize (Zea mays L.) genotypes designated as Sahwal-2002 (salt-tolerant) and Sadaf (salt-sensitive) to salt stress was investigated under controlled growth conditions. The role of phenylalanine and seed priming under salt stress in maize with different morphological parameters were studied. The genotype Sadaf, being salt-tolerant, experienced more oxidative damage than the Sahiwall-2002 genotype under salt stress. The salinity affected both growth and physiological attributes of the maize species whereas the phenylalanine successfully increased the salinity tolerance in maize species at the seedling stage.


Assuntos
Solo/química , Zea mays/crescimento & desenvolvimento , Salinidade , Estresse Salino , Fenilalanina/análise , Análise de Variância , Zea mays/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA