Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 175(2): e13907, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37039612

RESUMO

Drought stress is one of the most serious environmental stress factor constraining crop production across the globe. Among cereals, wheat grains are very sensitive to drought as a small degree of stress can affect the enzymatic system. This study aimed to investigate whether nitrogen and pre-anthesis drought priming could enhance the action of major regulatory enzymes involved in starch accumulation and protein synthesis in bread wheat (Triticum aestivum L.). For this purpose, cultivars YM-158 (medium gluten) and YM-22 (low gluten) were grown in rain-controlled conditions under two nitrogen levels, that is, N180 (N1) and N300 (N2). Drought priming was applied at the jointing stage and drought stress was applied 7 days after anthesis. Drought stress reduced starch content but enhanced protein content in grains. N2 and primed plants kept higher contents of nonstructural carbohydrates, fructans, and sucrose; with higher activity of sucrose-phosphate synthase in flag leaves. Furthermore, N2 and priming treatments showed higher sink ability to develop grains by showing higher sucrose-to-starch conversion activities of adenosine diphosphate-glucose pyrophosphorylase, uridine diphosphate glucose pyrophosphorylase, sucrose-synthase, soluble-starch synthase, starch branching enzyme, and granule-bound starch synthase as compared to N1 and non-primed treatments. The application of N2 and primed treatment showed a greater ability to maintain grain filling in both cultivars as compared to N1 and non-primed crops. Our study suggested that high nitrogen has the potential to enhance the effect of pre-drought priming to change source-sink relationships and grain yield of wheat under drought stress during the filling process.


Assuntos
Nitrogênio , Amido , Triticum , Secas , Grão Comestível/metabolismo , Glutens/metabolismo , Glutens/farmacologia , Nitrogênio/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Triticum/fisiologia
2.
Front Plant Sci ; 13: 895427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865293

RESUMO

The application of phytohormones through seed priming could enhance quality of important medicinal and aromatic plants (MAPs) under heavy metal stress. We evaluated the potential of salicylic acid (SA) priming for overcoming the adverse effects of cadmium stress in Mentha arvensis L. plants. Suckers of plants were primed with SA before transplanting them into soil. At 30 days after transplanting, two doses (50 and 100 µm) of CdCl2 were applied to the soil. Both Cd treatments altered plant growth, photosynthetic pigments, leaf gas exchange attributes, and mineral nutrient contents. The 50 and 100 µm Cd treatments increased endogenous Cd content by 97.95 and 98.03%, electrolyte leakage (EL) by 34.21 and 44.38%, hydrogen peroxide (H2O2) by 34.71 and 55.80%, malondialdehyde (MDA) by 53.08 and 63.15%, and superoxide content (O2 -•) by 24.07 and 38.43%, respectively. Cd triggered the up-regulation of antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; and glutathione reductase GR) and increased osmolyte biosynthesis and, interestingly, secondary metabolite (SM) accumulation. The presence of SA and Cd had an additive effect on these parameters. Nevertheless, plants primed with SA regulated stomatal conductance under Cd stress. SA priming to menthol mint plants under Cd stress overcome the effects of Cd stress while increasing SMs.

3.
Ecotoxicol Environ Saf ; 213: 112051, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33601169

RESUMO

Multi-walled carbon nanotubes (MWCNTs) have recently attracted huge attention to their impacts on the environment and plants. Therefore, this experiment was conducted to investigate the responses of lead (Pb) and cadmium (Cd) exposed pot marigold plants to various levels of MWCNT. Calendula officinalis (L.) seedlings were cultivated in Pb and Cd-polluted soils with exposure to 0, 50, 100, 250, 500 and 1000 mg L-1 of MWCNT. The results demonstrated that foliar-applied MWCNT up to 250 mg L-1 not only alleviated Pb and Cd-induced toxicity by reducing oxidative damage and boosting both enzymatic and non-enzymatic antioxidant defense system but also promoted the phytoremediation property of pot marigold plants by enhancing the accumulation of both Pb and Cd from the soil. Interestingly, oxidative damage exacerbation and both Pb and Cd accumulation reduction were noticed in pot marigold seedlings exposed to 500 and 1000 mg L-1 MWCNTs. The findings of this study clearly showed that the use of appropriate concentrations of MWCNTs in increasing the phytoremediation properties of pot marigold was justified, while the use of high concentrations is toxic to the plant and intensifies the toxic effects of heavy metals (HMs) on plant physiology. This study provides a novel method to facilitate the phytoremediation of HMs polluted soils using MWCNT as well as explores the potential risks of these nanoparticles to the plants.


Assuntos
Calendula/metabolismo , Metais Pesados/toxicidade , Nanotubos de Carbono , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Biodegradação Ambiental , Cádmio/toxicidade , Glutationa , Chumbo/toxicidade , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Solo , Poluentes do Solo/análise
4.
Physiol Mol Biol Plants ; 26(1): 25-39, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32158118

RESUMO

Menthol mint (Mentha arvensis L.) cultivation is significantly affected by the heavy metals like cadmium (Cd) which also imposes severe health hazards. Two menthol mint cultivars namely Kosi and Kushal were evaluated under Cd stress conditions. Impact of plant growth regulators (PGRs) like salicylic acid (SA), gibberellic acid (GA3) and triacontanol (Tria) on Cd stress tolerance was assessed. Reduced growth, photosynthetic parameters, mineral nutrient concentration, and increased oxidative stress biomarkers like electrolyte leakage, malondialdehyde, and hydrogen peroxide contents were observed under Cd stress. Differential upregulation of proline content and antioxidant activities under Cd stress was observed in both the cultivars. Interestingly, low electrolyte leakage, lipid peroxidation, hydrogen peroxide and Cd concentration in leaves were observed in Kushal compared to Kosi. Among all the PGRs tested, SA proved to be the best in improving Cd-stress tolerance in both the cultivars but Kushal responded better than Kosi.

5.
Antioxidants (Basel) ; 9(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947957

RESUMO

The heavy metal contamination in plant-soil environment has increased manifold recently. In order to reduce the harmful effects of metal stress in plants, the application of beneficial soil microbes is gaining much attention. In the present research, the role of Serratia marcescens BM1 in enhancing cadmium (Cd) stress tolerance and phytoremediation potential of soybean plants, was investigated. Exposure of soybean plants to two Cd doses (150 and 300 µM) significantly reduced plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Additionally, Cd induced the stress levels of Cd, proline, glycine betaine, hydrogen peroxide, malondialdehyde, antioxidant enzymes (i.e., catalase, CAT; ascorbate peroxidase, APX; superoxide dismutase, SOD; peroxidise, POD), and the expression of stress-related genes (i.e., APX, CAT, Fe-SOD, POD, CHI, CHS, PHD2, VSO, NR, and P5CS) in soybean leaves. On the other hand, inoculation of Cd-stressed soybean plants with Serratia marcescens BM1 significantly enhanced the plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Moreover, Serratia marcescens BM1 inoculation reduced the levels of cadmium and oxidative stress markers, but significantly induced the activities of antioxidant enzymes and the levels of osmolytes and stress-related genes expression in Cd-stressed plants. The application of 300 µM CdCl2 and Serratia marcescens triggered the highest expression levels of stress-related genes. Overall, this study suggests that inoculation of soybean plants with Serratia marcescens BM1 promotes phytoremediation potential and Cd stress tolerance by modulating the photosynthetic attributes, osmolytes biosynthesis, antioxidants machinery, and the expression of stress-related genes.

6.
Ecotoxicol Environ Saf ; 180: 575-587, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31129436

RESUMO

The present study identified inverse relationships between nickel (Ni) levels and growth, photosynthesis and physio-biochemical attributes, but increasing levels of Ni stress enhanced methylglyoxal, electrolyte leakage, hydrogen peroxide, and lipid peroxidation content. Exogenous application of salicylic acid (SA) (10-5 M) ameliorated the ill-effects of Ni by restoring growth, photosynthesis and physio-biochemical attributes and increasing the activities of enzymes associated with antioxidant systems, especially the ascorbate-glutathione (AsA-GSH) cycle and glyoxalase system. In addition, SA application to Ni-stressed plants had an additive effect on the activities of the ascorbate and glutathione pools, and the AsA-GSH cycle enzymes (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase), superoxide dismutase, catalase, glutathione S-transferase, and osmolyte biosynthesis). This trend also follows in glyoxalase system viz. glyoxalase I and glyoxalase II enzymes. Nevertheless, exogenous SA supplementation restored mineral nutrient contents. Principal component analysis showed that growth, photosynthesis, and mineral nutrient parameters were positively correlated with each other and negatively correlated with antioxidant enzymes and oxidative stress biomarkers. Hence, SA is an alternative compound with potential application in the phytoremediation of Ni.


Assuntos
Níquel/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ácido Salicílico/farmacologia , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Lactoilglutationa Liase/metabolismo , Peroxidação de Lipídeos , Mostardeira/efeitos dos fármacos , Mostardeira/enzimologia , Mostardeira/metabolismo , Fotossíntese/efeitos dos fármacos , Aldeído Pirúvico/metabolismo , Tioléster Hidrolases/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA