Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 96(Pt 2): 311-321, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25351725

RESUMO

Core plays a critical role during hepatitis C virus (HCV) assembly, not only as a structural component of the virion, but also as a regulator of the formation of assembly sites. In this study, we observed that core is expressed later than other HCV proteins in a single viral cycle assay, resulting in a relative increase of core expression during a late step of the viral life cycle. This delayed core expression results from an increase of core half-life, indicating that core is initially degraded and is stabilized at a late step of the HCV life cycle. Stabilization-mediated delayed kinetics of core expression were also observed using heterologous expression systems. Core stabilization did not depend on its interaction with non-structural proteins or lipid droplets but was correlated with its expression levels and its oligomerization status. Therefore in the course of a HCV infection, core stabilization is likely to occur when the prior amplification of the viral genome during an initial replication step allows core to be synthesized at higher levels as a stable protein, during the assembly step of the viral life cycle.


Assuntos
Regulação Viral da Expressão Gênica , Hepacivirus/fisiologia , Proteínas do Core Viral/biossíntese , Replicação Viral , Linhagem Celular , Perfilação da Expressão Gênica , Hepacivirus/genética , Hepatócitos/virologia , Humanos , Estabilidade Proteica , Fatores de Tempo , Proteínas do Core Viral/genética
2.
Pak J Pharm Sci ; 26(6): 1181-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24191324

RESUMO

Interferon Lambda (IFN-λ) is a type III interferon which belongs to a novel family of cytokines and possesses antiviral and antitumor properties. It is unique in its own class of cytokines; because of the specificity towards its heterodimer receptors and its structural similarities with cytokines of other classes. This renders IFN-λ a better choice for the treatment against many diseases including viral hepatitis and human coronavirus (HCoV-EMC). The present study describes a computational approach known as relative synonymous codon usage (RSCU); used to enhance the expression of IFN-λ protein in a eukaryotic expression system. Manually designed and commercially synthesized IFN-λ gene was cloned into pET-22b expression plasmid under the control of inducible T7-lac promoter. Maximum levels of IFN-λ expression was observed with 0.4 mM IPTG in transformed E. coli incubated for 4 hours in LB medium. Higher concentrations of IPTG had no or negative effect on the expression of IFN-λ. This synthetically over expressed IFN-λ can be tested as a targeted treatment option for viral hepatitis after purification.


Assuntos
Códon , Escherichia coli/genética , Genes Sintéticos , Interferons/genética , Clonagem Molecular , Expressão Gênica
3.
J Ind Microbiol Biotechnol ; 40(6): 625-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23515853

RESUMO

The global availability of a therapeutically effective influenza virus vaccine during a pandemic remains a major challenge for the biopharmaceutical industry. Long production time, coupled with decreased supply of embryonated chicken eggs (ECE), significantly affects the conventional vaccine production. Transformed cell lines have attained regulatory approvals for vaccine production. Based on the fact that the avian influenza virus would infect the cells derived from its natural host, the viral growth characteristics were studied on chicken embryo-derived primary cell cultures. The viral propagation was determined on avian origin primary cell cultures, transformed mammalian cell lines, and in ECE. A comparison was made between these systems by utilizing various cell culture-based assays. In-vitro substrate susceptibility and viral infection characteristics were evaluated by performing hemagglutination assay (HA), 50 % tissue culture infectious dose (TCID50) and monitoring of cytopathic effects (CPE) caused by the virus. The primary cell culture developed from chicken embryos showed stable growth characteristics with no contamination. HA, TCID50, and CPE exhibited that these cell systems were permissive to viral infection, yielding 2-10 times higher viral titer as compared to mammalian cell lines. Though the viral output from the ECE was equivalent to the chicken cell culture, the time period for achieving it was decreased to half. Some of the prerequisites of inactivated influenza virus vaccine production include generation of higher vial titer, independence from exogenous sources, and decrease in the production time lines. Based on the tests, it can be concluded that chicken embryo primary cell culture addresses these issues and can serve as a potential alternative for influenza virus vaccine production.


Assuntos
Galinhas/virologia , Vírus da Influenza A/crescimento & desenvolvimento , Vacinas contra Influenza/biossíntese , Influenza Aviária/virologia , Cultura Primária de Células/métodos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Embrião de Galinha , Indústria Farmacêutica , Testes de Hemaglutinação , Humanos , Vírus da Influenza A/fisiologia , Óvulo/virologia , Pandemias/prevenção & controle , Fatores de Tempo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA