Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 289: 121782, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36099713

RESUMO

Bioprosthetic heart valves (BHV) fabricated from heterograft tissue, such as glutaraldehyde pretreated bovine pericardium (BP), are the most frequently used heart valve replacements. BHV durability is limited by structural valve degeneration (SVD), mechanistically associated with calcification, advanced glycation end products (AGE), and serum protein infiltration. We investigated the hypothesis that anti-AGE agents, Aminoguanidine, Pyridoxamine [PYR], and N-Acetylcysteine could mitigate AGE-serum protein SVD mechanisms in vitro and in vivo, and that these agents could mitigate calcification or demonstrate anti-calcification interactions with BP pretreatment with ethanol. In vitro, each of these agents significantly inhibited AGE-serum protein infiltration in BP. However, in 28-day rat subdermal BP implants only orally administered PYR demonstrated significant inhibition of AGE and serum protein uptake. Furthermore, BP PYR preincubation of BP mitigated AGE-serum protein SVD mechanisms in vitro, and demonstrated mitigation of both AGE-serum protein uptake and reduced calcification in vivo in 28-day rat subdermal BP explants. Inhibition of BP calcification as well as inhibition of AGE-serum protein infiltration was observed in 28-day rat subdermal BP explants pretreated with ethanol followed by PYR preincubation. In conclusion, AGE-serum protein and calcification SVD pathophysiology are significantly mitigated by both PYR oral therapy and PYR and ethanol pretreatment of BP.


Assuntos
Bioprótese , Calcinose , Próteses Valvulares Cardíacas , Acetilcisteína , Animais , Proteínas Sanguíneas , Bovinos , Etanol/farmacologia , Glutaral , Produtos Finais de Glicação Avançada , Piridoxamina , Ratos
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35131859

RESUMO

Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)-modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.


Assuntos
Doenças das Valvas Cardíacas/tratamento farmacológico , Doenças das Valvas Cardíacas/terapia , Oxazóis/farmacologia , Pericárdio/efeitos dos fármacos , Animais , Materiais Biocompatíveis , Calcificação Fisiológica/efeitos dos fármacos , Calcinose/tratamento farmacológico , Calcinose/metabolismo , Calcinose/terapia , Linhagem Celular , Colágeno/metabolismo , Etanol/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Próteses Valvulares Cardíacas , Xenoenxertos/efeitos dos fármacos , Humanos , Masculino , Oxirredução/efeitos dos fármacos , Pericárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Células THP-1
3.
Acta Biomater ; 123: 275-285, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444798

RESUMO

Glutaraldehyde cross-linked heterograft tissues, bovine pericardium (BP) or porcine aortic valves, are the leaflet materials in bioprosthetic heart valves (BHV) used in cardiac surgery for heart valve disease. BHV fail due to structural valve degeneration (SVD), often with calcification. Advanced glycation end products (AGE) are post-translational, non-enzymatic reaction products from sugars reducing proteins. AGE are present in SVD-BHV clinical explants and are not detectable in un-implanted BHV. Prior studies modeled BP-AGE formation in vitro with glyoxal, a glucose breakdown product, and serum albumin. However, glucose is the most abundant AGE precursor. Thus, the present studies investigated the hypothesis that BHV susceptibility to glucose related AGE, together with serum proteins, results in deterioration of collagen structure and mechanical properties. In vitro experiments studied AGE formation in BP and porcine collagen sponges (CS) comparing 14C-glucose and 14C-glyoxal with and without bovine serum albumin (BSA). Glucose incorporation occurred at a significantly lower level than glyoxal (p<0.02). BSA co-incubations demonstrated reduced glyoxal and glucose uptake by both BP and CS. BSA incubation caused a significant increase in BP mass, enhanced by glyoxal co-incubation. Two-photon microscopy of BP showed BSA induced disruption of collagen structure that was more severe with glucose or glyoxal co-incubation. Uniaxial testing of CS demonstrated that glucose or glyoxal together with BSA compared to controls, caused accelerated deterioration of viscoelastic relaxation, and increased stiffness over a 28-day time course. In conclusion, glucose, glyoxal and BSA uniquely contribute to AGE-mediated disruption of heterograft collagen structure and deterioration of mechanical properties.


Assuntos
Próteses Valvulares Cardíacas , Animais , Bovinos , Colágeno , Glucose/farmacologia , Produtos Finais de Glicação Avançada , Glioxal , Xenoenxertos , Albumina Sérica , Soroalbumina Bovina , Suínos
4.
Nanoscale ; 10(3): 1356-1365, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29297526

RESUMO

A new biomimetic nanoreactor design, MaBiDz, is presented based on a copolymer brush in combination with superparamagnetic nanoparticles. This cellular nanoreactor features two species of magnetic particles, each functionalized with two components of a binary deoxyribozyme system. In the presence of a target mRNA analyte and a magnetic field, the nanoreactor is assembled to form a biocompartment enclosed by the polymeric brush that enables catalytic function of the binary deoxyribozyme with enhanced kinetics. MaBiDz was demonstrated here as a cellular sensor for rapid detection and imaging of a target mRNA biomarker for metastatic breast cancer, and its function shows potential to be expanded as a biomimetic organelle that can downregulate the activity of a target mRNA biomarker.


Assuntos
DNA Catalítico/química , Campos Magnéticos , Nanopartículas de Magnetita/química , Biomarcadores Tumorais/análise , Humanos , Células MCF-7 , Proteínas Nucleares , Polímeros , RNA Mensageiro/análise , Proteína 1 Relacionada a Twist
5.
J Am Chem Soc ; 139(35): 12117-12120, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28817270

RESUMO

Detection of specific mRNA in living cells has attracted significant attention in the past decade. Probes that can be easily delivered into cells and activated at the desired time can contribute to understanding translation, trafficking and degradation of mRNA. Here we report a new strategy termed magnetic field-activated binary deoxyribozyme (MaBiDZ) sensor that enables both efficient delivery and temporal control of mRNA sensing by magnetic field. MaBiDZ uses two species of magnetic beads conjugated with different components of a multicomponent deoxyribozyme (DZ) sensor. The DZ sensor is activated only in the presence of a specific target mRNA and when a magnetic field is applied. Here we demonstrate that MaBiDZ sensor can be internalized in live MCF-7 breast cancer cells and activated by a magnetic field to fluorescently report the presence of specific mRNA, which are cancer biomarkers.


Assuntos
Magnetismo , RNA Mensageiro/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células Cultivadas , DNA Catalítico/metabolismo , Feminino , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA