Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 883: 173346, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659303

RESUMO

Glioblastoma (GBM) is an aggressive and lethal form of brain cancer with a high invasion capacity and a lack of effective chemotherapeutics. Retinoid bexarotene (BXR) inhibits the neurospheroidal colony formation and migration of primary glioblastoma cells but has side effects. To enhance the BXR glioblastoma selectivity and cytotoxicity, we chemically modified it at the carboxyl group with either nitroethanolamine (NEA) bearing a NO-donating group (a well-known bioactivity enhancer; BXR-NEA) or with a dopamine (DA) moiety (to represent the highly toxic for various tumor cells N-acyldopamine family; BXR-DA). These two novel compounds were tested in the 2D (monolayer culture) and 3D (multicellular tumor spheroids) in vitro models. Both BXR-DA and BXR-NEA were found to be more toxic for rat C6 and human U-87MG glioma cells than the initial BXR. After 24 h incubation of the cells (monolayer culture) with the drugs, the IC50 values were in the range of 28-42, and 122-152 µM for BXR derivatives and BXR, respectively. The cell death occurred via apoptosis according to the annexin staining and caspase activation. The tumor spheroids demonstrated higher resistance to the treatment compared to that one of the monolayer cultures. BXR-DA and BXR-NEA were more specific against tumor cells than the parental drug, in particular the selectivity index was 1.8-2.7 vs. 1.3-1.5, respectively. Moreover, they inhibited cell migration more effectively than parental BXR according to a scratch assay. Cell spreading from the tumor spheroids was also inhibited. Thus, the obtained BXR derivatives could be promising for glioblastoma treatment.


Assuntos
Antineoplásicos/farmacologia , Bexaroteno/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Bexaroteno/análogos & derivados , Bexaroteno/síntese química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/metabolismo , Glioma/patologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Invasividade Neoplásica , Ratos , Esferoides Celulares , Relação Estrutura-Atividade
2.
Biomolecules ; 10(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059521

RESUMO

Cholines acylated with unsaturated fatty acids are a recently discovered family of endogenous lipids. However, the data on the biological activity of acylcholines remain very limited. We hypothesized that acylcholines containing residues of arachidonic (AA-CHOL), oleic (Ol-CHOL), linoleic (Ln-CHOL), and docosahexaenoic (DHA-CHOL) acids act as modulators of the acetylcholine signaling system. In the radioligand binding assay, acylcholines showed inhibition in the micromolar range of both α7 neuronal nAChR overexpressed in GH4C1 cells and muscle type nAChR from Torpedo californica, as well as Lymnaea stagnalis acetylcholine binding protein. Functional response was checked in two cell lines endogenously expressing α7 nAChR. In SH-SY5Y cells, these compounds did not induce Ca2+ rise, but inhibited the acetylcholine-evoked Ca2+ rise with IC50 9 to 12 µM. In the A549 lung cancer cells, where α7 nAChR activation stimulates proliferation, Ol-CHOL, Ln-CHOL, and AA-CHOL dose-dependently decreased cell viability by up to 45%. AA-CHOL inhibited human erythrocyte acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BChE) by a mixed type mechanism with Ki = 16.7 ± 1.5 µM and αKi = 51.4 ± 4.1 µM for AChE and Ki = 70.5 ± 6.3 µM and αKi = 214 ± 17 µM for BChE, being a weak substrate of the last enzyme only, agrees with molecular docking results. Thus, long-chain unsaturated acylcholines could be viewed as endogenous modulators of the acetylcholine signaling system.


Assuntos
Acetilcolina/farmacologia , Ácidos Araquidônicos/farmacologia , Colina/farmacologia , Inibidores da Colinesterase/farmacologia , Células A549 , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Butirilcolinesterase/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Colina/metabolismo , Eritrócitos/enzimologia , Feminino , Cavalos , Humanos , Concentração Inibidora 50 , Cinética , Lymnaea/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Oócitos/metabolismo , Ligação Proteica , Transdução de Sinais , Torpedo/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA