Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet World ; 16(12): 2425-2430, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38328367

RESUMO

Background and Aim: Adeno-associated virus serotype 2 (AAV2) represents a promising basis for developing a virus-vector vaccine against African swine fever (ASF). This study aimed to create genetic constructs based on AAV2 to deliver the immunodominant genes of ASF virus (ASFV) and to evaluate their functionality in vitro. The efficiency and specificity of transgene expression, as well as their non-toxicity in cells of target animals, were evaluated. Materials and Methods: Bioinformatics analysis methods were used to identify the immunodominant genes of ASFV. The target genes B646L, E183L, CP204L, and CP530R were identified and subsequently cloned into the pAAV-MCS vector. Assembly of recombinant AAV2 (rAAV2) was performed by cotransfection of AAV293 cells with the following plasmids: pAAV-MCS with the gene of interest, envelope, and packaging. Quantitative polymerase chain reaction was used to determine the AAV2 titer. The functionality of the constructs was evaluated in HEK293 and SPEV cells by determining the presence of mature proteins in the cell lysate and the expression levels of messenger RNA. The specificity of the target proteins in cell lysates was confirmed by Western blotting. Results: The proposed AAV2 assembly protocol makes it possible to achieve a concentration of mature viral particles of at least 280 billion/mL of virus-containing material. The rAAV2 could effectively transduce host SPEV cells. The expression of both cistrons was detectable during the transduction of cells; therefore, the combined expression of immunogens in the cells of target animals should be possible using this method. Conclusion: This study demonstrated the potential of using genetic constructs based on AAV2 for the delivery of ASFV genes in vitro.

2.
Polymers (Basel) ; 13(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833247

RESUMO

Here we report the use of forskolin-modified halloysite nanotubes (HNTs) as a dopant for biopolymer porous hydrogel scaffolds to impart osteoinductive properties. Forskolin is a labdane diterpenoid isolated from the Indian Coleus plant. This small molecule is widely used as a supplement in molecular biology for cell differentiation. It has been reported in some earlier publications that forskolin can activate osteodifferentiation process by cyclic adenosine monophosphate (c-AMP) signalling activation in stem cells. In presented study it was demonstrated that forskolin release from halloysite-doped scaffolds induced the osteodifferentiation of equine mesenchymal stem cells (MSCs) in vitro without addition of any specific growth factors. The reinforcement of mechanical properties of cells and intercellular space during the osteodifferentiation was demonstrated using atomic force microscopy (AFM). These clay-doped scaffolds may find applications to accelerate the regeneration of horse bone defects by inducing the processes of osteodifferentiation of endogenous MSCs.

3.
Open Vet J ; 11(1): 128-134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898294

RESUMO

One of the major problems observed in veterinary practice is articular cartilage injuries in animals. In terms of agriculture, it leads to their culling from the herd, even if they are highly productive animals. With companion animals, owners usually have to decide between euthanasia or long-term sometimes lifelong treatment of the injury by a veterinarian. The use of mesenchymal stem cells (MSCs) for the treatment of cartilage injury in veterinary medicine is based on the good results observed in preclinical studies, where large animals have been used as experimental models to study the regenerative activity of MSCs. According to the literature, MSCs in veterinary medicine have been used to treat cartilage injury of dogs and horses, whereas sheep and goats are generally models for reproducing the disease in preclinical experimental studies.


Assuntos
Doenças das Cartilagens/veterinária , Cartilagem Articular/lesões , Transplante de Células-Tronco Mesenquimais/veterinária , Células-Tronco Mesenquimais/citologia , Animais , Doenças das Cartilagens/terapia , Gatos/lesões , Bovinos/lesões , Cães/lesões , Cabras/lesões , Cavalos/lesões , Transplante de Células-Tronco Mesenquimais/estatística & dados numéricos , Carneiro Doméstico/lesões , Sus scrofa/lesões
4.
Open Vet J ; 10(3): 261-266, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33282696

RESUMO

Background: Tendon injuries are one of the most common causes of orthopedic disorders in horses. Such injuries involve a long course of treatment and recovery. The most promising method of treating these injuries is the use of recombinant proteins and gene therapy. Aim: In this work, we evaluated the therapeutic efficacy of plasmid DNA (pDNA) containing two species-specific coding sequences, i.e. vascular endothelial growth factor 164 (VEGF164) and fibroblast growth factor 2 (FGF2), in the treatment of severe damage to the tendon of the superficial digital flexor. Methods: A pDNA construct was used to restore the damaged superficial digital flexor tendon in the horse. Results: This study showed that the administration of pDNA encoding VEGF164 and FGF2 genes at the injury area increased the regenerative activities of the damaged tendon. Conclusion: This study shows the therapeutic properties of genetic constructs (pDNA) and contributes to the advancements in the use of these therapies.


Assuntos
Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Terapia Genética/veterinária , Cavalos/lesões , Plasmídeos/uso terapêutico , Traumatismos dos Tendões/veterinária , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Terapia Genética/estatística & dados numéricos , Masculino , Traumatismos dos Tendões/terapia
5.
Cells Tissues Organs ; 209(4-6): 236-247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33508824

RESUMO

Adipose tissue-derived mesenchymal stem cells (AD-MSCs) are promising for cell therapy in spinal cord injury (SCI). The pig is one of the most approximate models of many human diseases, including SCI. In our study, we selected the optimal conditions for the culture of porcine AD-MSCs and developed an in vitro SCI model based on the culture of cells in injured spinal cord extracts (SCE) 3 days and 6 weeks after SCI. We show that Dulbecco's Modified Eagle Medium (DMEM) with 20% serum content, supplemented with a combination of 5 mM L-ascorbate-2-phosphate and nonessential amino acids, stimulated a typical fibroblast-like morphology and high proliferation of porcine AD-MSCs. SCE caused a higher proliferation of porcine AD-MSCs compared with extracts from an intact spinal cord. The optimal proliferating effect was achieved using rostral 3 days SCE, and proliferation was lower in caudal and central SCE. Porcine AD-MSCs migration to the 3 days and 6 weeks SCE was higher than to an intact one and preferred the rostral SCE, avoiding central and caudal SCE. We also studied 13 cytokines contained in SCE but did not observe any definite relationship between some analyte concentrations and a change in the behavior of AD-MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Animais , Proliferação de Células , Extratos Vegetais , Medula Espinal , Traumatismos da Medula Espinal/terapia , Suínos
6.
Biomolecules ; 9(12)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805639

RESUMO

Here, we provide a first comparative study of the therapeutic potential of allogeneic mesenchymal stem cells derived from bone marrow (BM-MSCs), adipose tissue (AD-MSCs), and dental pulp (DP-MSCs) embedded in fibrin matrix, in small (rat) and large (pig) spinal cord injury (SCI) models during subacute period of spinal contusion. Results of behavioral, electrophysiological, and histological assessment as well as immunohistochemistry and real-time polymerase chain reaction analysis suggest that application of AD-MSCs combined with a fibrin matrix within the subacute period in rats (2 weeks after injury), provides significantly higher post-traumatic regeneration compared to a similar application of BM-MSCs or DP-MSCs. Within the rat model, use of AD-MSCs resulted in a marked change in: (1) restoration of locomotor activity and conduction along spinal axons; (2) reduction of post-traumatic cavitation and enhancing tissue retention; and (3) modulation of microglial and astroglial activation. The effect of an autologous application of AD-MSCs during the subacute period after spinal contusion was also confirmed in pigs (6 weeks after injury). Effects included: (1) partial restoration of the somatosensory spinal pathways; (2) reduction of post-traumatic cavitation and enhancing tissue retention; and (3) modulation of astroglial activation in dorsal root entry zone. However, pigs only partially replicated the findings observed in rats. Together, these results indicate application of AD-MSCs embedded in fibrin matrix at the site of SCI during the subacute period can facilitate regeneration of nervous tissue in rats and pigs. These results, for the first time, provide robust support for the use of AD-MSC to treat subacute SCI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Traumatismos da Medula Espinal/terapia , Tecido Adiposo/citologia , Animais , Células da Medula Óssea , Células Cultivadas , Polpa Dentária/citologia , Feminino , Ratos Wistar , Suínos
7.
Front Vet Sci ; 6: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931318

RESUMO

Objectives: Large full-thickness skin defects represent a serious veterinary problem. Methods: We have developed novel bioactive 3D-matrixes based on fibrin glue Tissucol (Baxter), containing the combination of the adenoviral constructs with genes vascular endothelial growth factor 165 (VEGF165) and fibroblast growth factor two (FGF2; construct Ad5-VEGF165 + Ad5-FGF2) or multipotent mesenchymal stem cells, genetically modified with these constructs. Results: In vitro studies confirmed the biosynthesis of VEGF165 and FGF2 mRNA in the transduced cells. Ad5-VEGF165 + Ad5-FGF2- transduced multipotent mesenchymal stem cells showed an enhanced capacity to form capillary-like tubes in vitro. Bioactive 3D-matrix application enhanced granulation tissue formation and epithelialization of non-healing, large bite wounds in a dog. Successful wound healing was observed with a positive clinical outcome for the canine patient. This research and application of regenerative gene therapy alongside a novel bioactive 3D-matrix shows promising clinical applications for the future in both dogs and other mammals including humans.

8.
Front Pharmacol ; 9: 86, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559908

RESUMO

We examined the effect of transplantation of allogenic adipose-derived stem cells (ADSCs) with properties of mesenchymal stem cells (MSCs) on posttraumatic sciatic nerve regeneration in rats. We suggested an approach to rat sciatic nerve reconstruction using the nerve from the other leg as a graft. The comparison was that of a critical 10 mm nerve defect repaired by means of autologous nerve grafting versus an identical lesion on the contralateral side. In this experimental model, the same animal acts simultaneously as a test model, and control. Regeneration of the left nerve was enhanced by the use of ADSCs, whereas the right nerve healed under natural conditions. Thus the effects of individual differences were excluded and a result closer to clinical practice obtained. We observed significant destructive changes in the sciatic nerve tissue after surgery which resulted in the formation of combined contractures in knee and ankle joints of both limbs and neurotrophic ulcers only on the right limb. The stimulation of regeneration by ADSCs increased the survival of spinal L5 ganglia neurons by 26.4%, improved sciatic nerve vascularization by 35.68% and increased the number of myelin fibers in the distal nerve by 41.87%. Moreover, we have demonstrated that S100, PMP2, and PMP22 gene expression levels are suppressed in response to trauma as compared to intact animals. We have shown that ADSC-based therapy contributes to significant improvement in the regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA