Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920664

RESUMO

Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.


Assuntos
Hepacivirus , Poliaminas , Prolina , Ureia , Replicação Viral , Prolina/metabolismo , Humanos , Hepacivirus/fisiologia , Hepacivirus/efeitos dos fármacos , Poliaminas/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Replicação Viral/efeitos dos fármacos , Arginase/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , Linhagem Celular Tumoral , Prolina Oxidase/metabolismo
3.
Viruses ; 16(2)2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399969

RESUMO

The high incidence of epithelial malignancies in HIV-1 infected individuals is associated with co-infection with oncogenic viruses, such as high-risk human papillomaviruses (HR HPVs), mostly HPV16. The molecular mechanisms underlying the HIV-1-associated increase in epithelial malignancies are not fully understood. A collaboration between HIV-1 and HR HPVs in the malignant transformation of epithelial cells has long been anticipated. Here, we delineated the effects of HIV-1 reverse transcriptase on the in vitro and in vivo properties of HPV16-infected cervical cancer cells. A human cervical carcinoma cell line infected with HPV16 (Ca Ski) was made to express HIV-1 reverse transcriptase (RT) by lentiviral transduction. The levels of the mRNA of the E6 isoforms and of the factors characteristic to the epithelial/mesenchymal transition were assessed by real-time RT-PCR. The parameters of glycolysis and mitochondrial respiration were determined using Seahorse technology. RT expressing Ca Ski subclones were assessed for the capacity to form tumors in nude mice. RT expression increased the expression of the E6*I isoform, modulated the expression of E-CADHERIN and VIMENTIN, indicating the presence of a hybrid epithelial/mesenchymal phenotype, enhanced glycolysis, and inhibited mitochondrial respiration. In addition, the expression of RT induced phenotypic alterations impacting cell motility, clonogenic activity, and the capacity of Ca Ski cells to form tumors in nude mice. These findings suggest that HIV-RT, a multifunctional protein, affects HPV16-induced oncogenesis, which is achieved through modulation of the expression of the E6 oncoprotein. These results highlight a complex interplay between HIV antigens and HPV oncoproteins potentiating the malignant transformation of epithelial cells.


Assuntos
Carcinoma de Células Escamosas , Transcriptase Reversa do HIV , Papillomavirus Humano 16 , Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Células Epiteliais/metabolismo , Papillomavirus Humano 16/fisiologia , Camundongos Nus , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Fenótipo , Proteínas Repressoras/genética
4.
Biomolecules ; 13(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37189460

RESUMO

Reactive oxygen species (ROS) play a major role in the regulation of various processes in the cell. The increase in their production is a factor contributing to the development of numerous pathologies, including inflammation, fibrosis, and cancer. Accordingly, the study of ROS production and neutralization, as well as redox-dependent processes and the post-translational modifications of proteins, is warranted. Here, we present a transcriptomic analysis of the gene expression of various redox systems and related metabolic processes, such as polyamine and proline metabolism and the urea cycle in Huh7.5 hepatoma cells and the HepaRG liver progenitor cell line, that are widely used in hepatitis research. In addition, changes in response to the activation of polyamine catabolism that contribute to oxidative stress were studied. In particular, differences in the gene expression of various ROS-producing and ROS-neutralizing proteins, the enzymes of polyamine metabolisms and proline and urea cycles, as well as calcium ion transporters between cell lines, are shown. The data obtained are important for understanding the redox biology of viral hepatitis and elucidating the influence of the laboratory models used.


Assuntos
Carcinoma Hepatocelular , Hepatócitos , Neoplasias Hepáticas , Poliaminas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Redes e Vias Metabólicas , Oxirredução , Poliaminas/metabolismo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ureia
5.
Mol Ther Nucleic Acids ; 32: 478-493, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37187708

RESUMO

APOBEC/AID cytidine deaminases play an important role in innate immunity and antiviral defenses and were shown to suppress hepatitis B virus (HBV) replication by deaminating and destroying the major form of HBV genome, covalently closed circular DNA (cccDNA), without toxicity to the infected cells. However, developing anti-HBV therapeutics based on APOBEC/AID is complicated by the lack of tools for activating and controlling their expression. Here, we developed a CRISPR-activation-based approach (CRISPRa) to induce APOBEC/AID transient overexpression (>4-800,000-fold increase in mRNA levels). Using this new strategy, we were able to control APOBEC/AID expression and monitor their effects on HBV replication, mutation, and cellular toxicity. CRISPRa prominently reduced HBV replication (∼90%-99% decline of viral intermediates), deaminated and destroyed cccDNA, but induced mutagenesis in cancer-related genes. By coupling CRISPRa with attenuated sgRNA technology, we demonstrate that APOBEC/AID activation can be precisely controlled, eliminating off-site mutagenesis in virus-containing cells while preserving prominent antiviral activity. This study untangles the differences in the effects of physiologically expressed APOBEC/AID on HBV replication and cellular genome, provides insights into the molecular mechanisms of HBV cccDNA mutagenesis, repair, and degradation, and, finally, presents a strategy for a tunable control of APOBEC/AID expression and for suppressing HBV replication without toxicity.

6.
Antioxidants (Basel) ; 12(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107349

RESUMO

Hepatitis delta virus (HDV) is a viroid-like satellite that may co-infect individuals together with hepatitis B virus (HBV), as well as cause superinfection by infecting patients with chronic hepatitis B (CHB). Being a defective virus, HDV requires HBV structural proteins for virion production. Although the virus encodes just two forms of its single antigen, it enhances the progression of liver disease to cirrhosis in CHB patients and increases the incidence of hepatocellular carcinoma. HDV pathogenesis so far has been attributed to virus-induced humoral and cellular immune responses, while other factors have been neglected. Here, we evaluated the impact of the virus on the redox status of hepatocytes, as oxidative stress is believed to contribute to the pathogenesis of various viruses, including HBV and hepatitis C virus (HCV). We show that the overexpression of large HDV antigen (L-HDAg) or autonomous replication of the viral genome in cells leads to increased production of reactive oxygen species (ROS). It also leads to the upregulated expression of NADPH oxidases 1 and 4, cytochrome P450 2E1, and ER oxidoreductin 1α, which have previously been shown to mediate oxidative stress induced by HCV. Both HDV antigens also activated the Nrf2/ARE pathway, which controls the expression of a spectrum of antioxidant enzymes. Finally, HDV and its large antigen also induced endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR). In conclusion, HDV may enhance oxidative and ER stress induced by HBV, thus aggravating HBV-associated pathologies, including inflammation, liver fibrosis, and the development of cirrhosis and hepatocellular carcinoma.

7.
Cancers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36428704

RESUMO

Glioblastoma multiforme (GBM) is one of the most common types of brain tumor. Despite intensive research, patients with GBM have a poor prognosis due to a very high rate of relapse and significant side effects of the treatment, with a median survival of 14.6 months. Oncolytic viruses are considered a promising strategy to eliminate GBM and other types of cancer, and several viruses have already been introduced into clinical practice. However, identification of the factors that underly the sensitivity of tumor species to oncolytic viruses or that modulate their clinical efficacy remains an important target. Here, we show that Coxsackievirus B5 (CVB5) demonstrates high oncolytic potential towards GBM primary cell species and cell lines. Moreover, 2-deoxyglucose (2DG), an inhibitor of glycolysis, potentiates the cytopathic effects of CVB5 in most of the cancer cell lines tested. The cells in which the inhibition of glycolysis enhanced oncolysis are characterized by high mitochondrial respiratory activity and glycolytic capacity, as determined by Seahorse analysis. Thus, 2-deoxyglucose and other analogs should be considered as adjuvants for oncolytic therapy of glioblastoma multiforme.

8.
Aging (Albany NY) ; 13(16): 20050-20080, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34428743

RESUMO

BACKGROUND: Abisil is an extract of Siberian fir terpenes with antimicrobial and wound healing activities. Previous studies revealed that Abisil has geroprotective, anti-tumorigenic, and anti-angiogenic effects. Abisil decreased the expression of cyclin D1, E1, A2, and increased the phosphorylation rate of AMPK. OBJECTIVE: In the present study, we analyzed the effect of Abisil on autophagy, the mitochondrial potential of embryonic human lung fibroblasts. We evaluated its antioxidant activity and analyzed the transcriptomic and proteomic effects of Abisil treatment. RESULTS: Abisil treatment resulted in activation of autophagy, reversal of rotenone-induced elevation of reactive oxygen species (ROS) levels and several-fold decrease of mitochondrial potential. Lower doses of Abisil (25 µg/ml) showed a better oxidative effect than high doses (50 or 125 µg/ml). Estimation of metabolic changes after treatment with 50 µg/ml has not shown any changes in oxygen consumption rate, but extracellular acidification rate decreased significantly. Abisil treatment (5 and 50 µg/ml) of MRC5-SV40 cells induced a strong transcriptomic shift spanning several thousand genes (predominantly, expression decrease). Among down-regulated genes, we noticed an over-representation of genes involved in cell cycle progression, oxidative phosphorylation, and fatty acid biosynthesis. Additionally, we observed predominant downregulation of genes encoding for kinases. Proteome profiling also revealed that the content of hundreds of proteins is altered after Abisil treatment (mainly, decreased). These proteins were involved in cell cycle regulation, intracellular transport, RNA processing, translation, mitochondrial organization. CONCLUSIONS: Abisil demonstrated antioxidant and autophagy stimulating activity. Treatment with Abisil results in the predominant downregulation of genes involved in the cell cycle and oxidative phosphorylation.


Assuntos
Abies/química , Antioxidantes/metabolismo , Autofagia/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteoma/genética , Terpenos/farmacologia , Transcriptoma/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteoma/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo
9.
Antioxidants (Basel) ; 11(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35052601

RESUMO

Changes in metabolic pathways are often associated with the development of various pathologies including cancer, inflammatory diseases, obesity and metabolic syndrome. Identification of the particular metabolic events that are dysregulated may yield strategies for pharmacologic intervention. However, such studies are hampered by the use of classic cell media that do not reflect the metabolite composition that exists in blood plasma and which cause non-physiological adaptations in cultured cells. In recent years two groups presented media that aim to reflect the composition of human plasma, namely human plasma-like medium (HPLM) and Plasmax. Here we describe that, in four different mammalian cell lines, Plasmax enhances mitochondrial respiration. This is associated with the formation of vast mitochondrial networks and enhanced production of reactive oxygen species (ROS). Interestingly, cells cultivated in Plasmax displayed significantly less lysosomes than when any standard media were used. Finally, cells cultivated in Plasmax support replication of various RNA viruses, such as hepatitis C virus (HCV) influenza A virus (IAV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and several others, albeit at lower levels and with delayed kinetics. In conclusion, studies of metabolism in the context of viral infections, especially those concerning mitochondria, lysosomes, or redox systems, should be performed in Plasmax medium.

10.
Vaccines (Basel) ; 8(1)2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024236

RESUMO

Hepatitis C virus (HCV) is one of the major causes of chronic liver disease and leads to cirrhosis and hepatocarcinoma. Despite extensive research, there is still no vaccine against HCV. In order to induce an immune response in DBA/2J mice against HCV, we obtained modified mouse mesenchymal stem cells (mMSCs) simultaneously expressing five nonstructural HCV proteins (NS3-NS5B). The innate immune response to mMSCs was higher than to DNA immunization, with plasmid encoding the same proteins, and to naïve unmodified MSCs. mMSCs triggered strong phagocytic activity, enhanced lymphocyte proliferation, and production of type I and II interferons. The adaptive immune response to mMSCs was also more pronounced than in the case of DNA immunization, as exemplified by a fourfold stronger stimulation of lymphocyte proliferation in response to HCV, a 2.6-fold higher rate of biosynthesis, and a 30-fold higher rate of secretion of IFN-γ, as well as by a 40-fold stronger production of IgG2a antibodies to viral proteins. The immunostimulatory effect of mMSCs was associated with pronounced IL-6 secretion and reduction in the population of myeloid derived suppressor cells (MDSCs). Thus, this is the first example that suggests the feasibility of using mMSCs for the development of an effective anti-HCV vaccine.

11.
Oxid Med Cell Longev ; 2019: 3196140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687077

RESUMO

Hepatitis C virus (HCV) triggers massive production of reactive oxygen species (ROS) and affects expression of genes encoding ROS-scavenging enzymes. Multiple lines of evidence show that levels of ROS production contribute to the development of various virus-associated pathologies. However, investigation of HCV redox biology so far remained in the paradigm of oxidative stress, whereas no attention was given to the identification of redox switches among viral proteins. Here, we report that one of such redox switches is the NS5B protein that exhibits RNA-dependent RNA polymerase (RdRp) activity. Treatment of the recombinant protein with reducing agents significantly increases its enzymatic activity. Moreover, we show that the NS5B protein is subjected to S-glutathionylation that affects cysteine residues 89, 140, 170, 223, 274, 521, and either 279 or 295. Substitution of these cysteines except C89 and C223 with serine residues led to the reduction of the RdRp activity of the recombinant protein in a primer-dependent assay. The recombinant protein with a C279S mutation was almost inactive in vitro and could not be activated with reducing agents. In contrast, cysteine substitutions in the NS5B region in the context of a subgenomic replicon displayed opposite effects: most of the mutations enhanced HCV replication. This difference may be explained by the deleterious effect of oxidation of NS5B cysteine residues in liver cells and by the protective role of S-glutathionylation. Based on these data, redox-sensitive posttranslational modifications of HCV NS5B and other proteins merit a more detailed investigation and analysis of their role(s) in the virus life cycle and associated pathogenesis.


Assuntos
Cisteína/metabolismo , Glutationa/metabolismo , Hepacivirus/enzimologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Substituição de Aminoácidos , Linhagem Celular Tumoral , Genoma Viral , Hepacivirus/genética , Humanos , Oxirredução , Proteínas Recombinantes/metabolismo , Replicon/genética , Serina/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
12.
Biochimie ; 158: 82-89, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30578923

RESUMO

Leukemic cells from different patients exhibit different sensitivity to anticancer drugs including doxorubicin (DOX). Resistance to chemotherapy decreases efficacy of the treatment and promotes cancer recurrence and metastases. One of the approaches to overcome drug resistance includes E2F1-mediated regulation of the р73 protein that belongs to the р53 family. Its ΔNp73 isoform exhibits pro-oncogenic effects, and TAp73 - anti-oncogenic effects. Human cytomegalovirus (HCMV), often found in tumors, suppresses pro-apoptotic pathways and E2F1/p73 in particular. The activity of E2F1 and p73 transcription factors is linked to metabolism of biogenic polyamines. Therefore, it could be suggested that compounds that target polyamine-metabolizing enzymes can sensitize HCMV-infected hematological malignancies to doxorubicin. Here we report that HCMV infection of ТНР-1 monocytic leukemic cells considerably elevates E2F1 levels and shifts the balance between the р73 isoforms towards ΔNp73 leading to survival of DOX-treated leukemic cells. In contrast, MDL72.527, an inhibitor of polyamine catabolism, decreases ΔNp73/ТАр73 ratio and thus restores sensitivity of the cells to DOX. Our findings indicate the combination of doxorubicin and MDL72.527 may present a novel strategy for therapy of leukemia in patients with and without HCMV infection.


Assuntos
Poliaminas Biogênicas/metabolismo , Infecções por Citomegalovirus/tratamento farmacológico , Citomegalovirus/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Leucemia Monocítica Aguda/tratamento farmacológico , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , Humanos , Leucemia Monocítica Aguda/genética , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , Células THP-1 , Proteína Tumoral p73/metabolismo
13.
Int J Mol Sci ; 19(4)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673197

RESUMO

Reactive oxygen species (ROS) are produced in various cell compartments by an array of enzymes and processes. An excess of ROS production can be hazardous for normal cell functioning, whereas at normal levels, ROS act as vital regulators of many signal transduction pathways and transcription factors. ROS production is affected by a wide range of viruses. However, to date, the impact of viral infections has been studied only in respect to selected ROS-generating enzymes. The role of several ROS-generating and -scavenging enzymes or cellular systems in viral infections has never been addressed. In this review, we focus on the roles of biogenic polyamines and oxidative protein folding in the endoplasmic reticulum (ER) and their interplay with viruses. Polyamines act as ROS scavengers, however, their catabolism is accompanied by H2O2 production. Hydrogen peroxide is also produced during oxidative protein folding, with ER oxidoreductin 1 (Ero1) being a major source of oxidative equivalents. In addition, Ero1 controls Ca2+ efflux from the ER in response to e.g., ER stress. Here, we briefly summarize the current knowledge on the physiological roles of biogenic polyamines and the role of Ero1 at the ER, and present available data on their interplay with viral infections.


Assuntos
Poliaminas Biogênicas/metabolismo , Estresse Oxidativo , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Viroses/metabolismo , Animais , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias/metabolismo , Transdução de Sinais
14.
Int J Mol Sci ; 18(11)2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29113144

RESUMO

The hepatitis C virus (HCV) causes chronic liver disease leading to fibrosis, cirrhosis, and hepatocellular carcinoma. HCV infection triggers various types of cell death which contribute to hepatitis C pathogenesis. However, much is still unknown about the impact of viral proteins on them. Here we present the results of simultaneous immunocytochemical analysis of markers of apoptosis, autophagy, and necrosis in Huh7.5 cells expressing individual HCV proteins or their combinations, or harboring the virus replicon. Stable replication of the full-length HCV genome or transient expression of its core, Е1/Е2, NS3 and NS5B led to the death of 20-47% cells, 72 h posttransfection, whereas the expression of the NS4A/B, NS5A or NS3-NS5B polyprotein did not affect cell viability. HCV proteins caused different impacts on the activation of caspases-3, -8 and -9 and on DNA fragmentation. The structural core and E1/E2 proteins promoted apoptosis, whereas non-structural NS4A/B, NS5A, NS5B suppressed apoptosis by blocking various members of the caspase cascade. The majority of HCV proteins also enhanced autophagy, while NS5A also induced necrosis. As a result, the death of Huh7.5 cells expressing the HCV core was induced via apoptosis, the cells expressing NS3 and NS5B via autophagy-associated death, and the cells expressing E1/E2 glycoproteins or harboring HCV the replicon via both apoptosis and autophagy.


Assuntos
Carcinoma Hepatocelular/genética , Hepacivirus/genética , Neoplasias Hepáticas/genética , Proteínas não Estruturais Virais/genética , Apoptose/genética , Autofagia/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Caspases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genoma Viral/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/virologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/virologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Transdução de Sinais , Transfecção , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA