Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(2): 929-943, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36608272

RESUMO

Adenosine tripolyphosphate (ATP) is a small polyvalent anion that has recently been shown to interact with proteins and have a major impact on assembly processes involved in biomolecular condensate formation and protein aggregation. However, the nature of non-specific protein-ATP interactions and their effects on protein solubility are largely unknown. Here, the binding of ATP to the globular model protein is characterized in detail using X-ray crystallography and nuclear magnetic resonance (NMR). Using NMR, we identified six ATP binding sites on the lysozyme surface, with one known high-affinity nucleic acid binding site and five non-specific previously unknown sites with millimolar affinities that also bind tripolyphosphate (TPP). ATP binding occurs primarily through the polyphosphate moiety, which was confirmed by the X-ray structure of the lysozyme-ATP complex. Importantly, ATP binds preferentially to arginine over lysine in non-specific binding sites. ATP and TPP have similar effects on solution-phase protein-protein interactions. At low salt concentrations, ion binding to lysozyme causes precipitation, while at higher salt concentrations, redissolution occurs. The addition of an equimolar concentration of magnesium to ATP does not alter ATP binding affinities but prevents lysozyme precipitation. These findings have important implications for both protein crystallization and cell biology. Crystallization occurs readily in ATP solutions outside the well-established crystallization window. In the context of cell biology, the findings suggest that ATP binds non-specifically to folded proteins in physiological conditions. Based on the nature of the binding sites identified by NMR, we propose several mechanisms for how ATP binding can prevent the aggregation of natively folded proteins.


Assuntos
Adenosina , Muramidase , Adenosina/metabolismo , Muramidase/química , Sítios de Ligação , Polifosfatos , Trifosfato de Adenosina/metabolismo , Ligação Proteica
2.
J Med Chem ; 65(3): 1898-1914, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35104933

RESUMO

RAS is a major anticancer drug target which requires membrane localization to activate downstream signal transduction. The direct inhibition of RAS has proven to be challenging. Here, we present a novel strategy for targeting RAS by stabilizing its interaction with the prenyl-binding protein PDE6D and disrupting its localization. Using rationally designed RAS point mutations, we were able to stabilize the RAS:PDE6D complex by increasing the affinity of RAS for PDE6D, which resulted in the redirection of RAS to the cytoplasm and the primary cilium and inhibition of oncogenic RAS/ERK signaling. We developed an SPR fragment screening and identified fragments that bind at the KRAS:PDE6D interface, as shown through cocrystal structures. Finally, we show that the stoichiometric ratios of KRAS:PDE6D vary in different cell lines, suggesting that the impact of this strategy might be cell-type-dependent. This study forms the foundation from which a potential anticancer small-molecule RAS:PDE6D complex stabilizer could be developed.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/análise , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
3.
Eur J Pharm Biopharm ; 158: 11-20, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33137420

RESUMO

Development of peptide therapeutics generally involves screening of excipients that inhibit peptide-peptide interactions, hence aggregation, and improve peptide stability. We used the therapeutic peptide plectasin to develop a fast screening method that combines microscale thermophoresis titration assays and molecular dynamics simulations to relatively rank the excipients with respect to binding affinity and to study key peptide-excipient interaction hotspots on a molecular level, respectively. Additionally, 1H-13C-HSQC NMR titration experiments were performed to validate the fast screening approach. The NMR results are in qualitative agreement with results from the fast screening method demonstrating that this approach can be reliably applied to other peptides and proteins as a fast screening method to relatively rank excipients and predict possible excipient binding sites.


Assuntos
Anti-Infecciosos/química , Composição de Medicamentos/métodos , Excipientes/química , Ensaios de Triagem em Larga Escala/métodos , Peptídeos/química , Anti-Infecciosos/uso terapêutico , Humanos , Infecções/tratamento farmacológico , Simulação de Dinâmica Molecular , Peptídeos/uso terapêutico , Espectroscopia de Prótons por Ressonância Magnética , Reprodutibilidade dos Testes
4.
Mol Pharm ; 17(9): 3298-3313, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32609526

RESUMO

Therapeutic peptides and proteins show enormous potential in the pharmaceutical market, but high costs in discovery and development are limiting factors so far. Single or multiple point mutations are commonly introduced in protein drugs to increase their binding affinity or selectivity. They can also induce adverse properties, which might be overlooked in a functional screen, such as a decreased colloidal or thermal stability, leading to problems in later stages of the development. In this study, we address the effect of point mutations on the stability of the 4.4 kDa antimicrobial peptide plectasin, as a case study. We combined a systematic high-throughput biophysical screen of the peptide thermal and colloidal stability using dynamic light scattering and differential scanning calorimetry with structure-based methods including small-angle X-ray scattering, analytical ultracentrifugation, and nuclear magnetic resonance spectroscopy. Additionally, we applied molecular dynamics simulations to link obtained protein stability parameters to the protein's molecular structure. Despite their predicted structural similarities, all four plectasin variants showed substantially different behavior in solution. We observed an increasing propensity of plectasin to aggregate at a higher pH, and the introduced mutations influenced the type of aggregation. Our strategy for systematically assessing the stability and aggregation of protein drugs is generally applicable and is of particular relevance, given the increasing number of protein drugs in development.


Assuntos
Mutação Puntual/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Biofísica/métodos , Varredura Diferencial de Calorimetria/métodos , Difusão Dinâmica da Luz/métodos , Concentração de Íons de Hidrogênio , Peptídeos/química , Peptídeos/genética , Agregados Proteicos/genética , Estabilidade Proteica/efeitos dos fármacos
5.
ACS Omega ; 4(19): 18248-18256, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720525

RESUMO

Peptide aptamers built using engineered scaffolds are a valuable alternative to monoclonal antibodies in many research applications because of their smaller size, versatility, specificity for chosen targets, and ease of production. However, inserting peptides needed for target binding may affect the aptamer structure, in turn compromising its activity. We have shown previously that a stefin A-based protein scaffold with AU1 and Myc peptide insertions (SQT-1C) spontaneously forms dimers and tetramers and that inserted loops mediate this process. In the present study, we show that SQT-1C forms tetramers by self-association of dimers and determine the kinetics of monomer-dimer and dimer-tetramer transitions. Using site-directed mutagenesis, we show that while slow domain swapping defines the rate of dimerization, conserved proline P80 is involved in the tetramerization process. We also demonstrate that the addition of a disulphide bond at the base of the engineered loop prevents domain swapping and dimer formation, also preventing subsequent tetramerization. Formation of SQT-1C oligomers compromises the presentation of inserted peptides for target molecule binding, diminishing aptamer activity; however, the introduction of the disulphide bond locking the monomeric state enables maximum specific aptamer activity, while also increasing its thermal and colloidal stability. We conclude that stabilizing scaffold proteins by adding disulphide bonds at peptide insertion sites might be a useful approach in preventing binding-epitope-driven oligomerization, enabling creation of very stable aptamers with maximum binding activity.

6.
Sci Rep ; 9(1): 9067, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227800

RESUMO

Engineered protein scaffolds are an alternative to monoclonal antibodies in research and drug design due to their small size, ease of production, versatility, and specificity for chosen targets. One key consideration when engineering such proteins is retaining the original scaffold structure and stability upon insertion of target-binding loops. SQT is a stefin A derived scaffold protein that was used as a model to study possible problems associated with solution behaviour of such aptamers. We used an SQT variant with AU1 and Myc insertion peptides (SQT-1C) to study the effect of peptide insertions on protein structure and oligomerisation. The X-ray structure of monomeric SQT-1C revealed a cystatin-like fold. Furthermore, we show that SQT-1C readily forms dimers and tetramers in solution. NMR revealed that these oligomers are symmetrical, with inserted loops comprising the interaction interface. Two possible mechanisms of oligomerisation are compared using molecular dynamics simulations, with domain swap oligomerisation being thermodynamically favoured. We show that retained secondary structure upon peptide insertion is not indicative of unaltered 3D structure and solution behaviour. Therefore, additional methods should be employed to comprehensively assess the consequences of peptide insertions in all aptamers, particularly as uncharacterized oligomerisation may alter binding epitope presentation and affect functional efficiency.


Assuntos
Cistatinas/química , Engenharia de Proteínas , Cristalografia por Raios X , Epitopos/química , Polimerização , Conformação Proteica
7.
J Phys Chem B ; 123(23): 4867-4877, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31099578

RESUMO

Plectasin is a small, cysteine-rich peptide antibiotic which belongs to the class of antimicrobial peptides and has potential antibacterial activity against various Gram-positive bacteria. In the current study, the effect of pH and ionic strength (NaCl) on the conformational stability of plectasin variants has been investigated. At all physiochemical conditions, peptide secondary structures are intact throughout simulations. However, flexibility increases with pH because of the change in electrostatics around the distinct anionic tetrapeptide (9-12) stretch. Furthermore, plectasin interactions with NaCl were measured by determining the preferential interaction coefficients, Γ23. Generally, wild-type plectasin has higher preference for sodium ions as 9ASP is mutated in other variants. Overall, the Γ23 trend with pH for the two salt conditions remain the same for all variants predominately having accumulation of sodium ions around 10GLU and 12ASP. Insignificant changes in the overall peptide conformational stability are in agreement with the fact that plectasin has three cystines. Thermodynamic integration molecular dynamics simulations supplemented with nuclear magnetic resonance were employed to determine the degree of involvement of three different cystines to the overall structural integrity of the peptide. Both methods show the same order of cystine reduction and complete unfolding is observed only upon reduction of all cystines.


Assuntos
Antibacterianos/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Conformação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA