Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Genet ; 65(3): 104440, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35093605

RESUMO

CEDNIK (Cerebral Dysgenesis, Neuropathy, Ichthyosis, and Keratoderma) syndrome is a neuro ichthyotic syndrome characterized by a clinical constellation of features including severe developmental delay, microcephaly, and facial dysmorphism. Here, we report the clinical and molecular characterization of a patient with CEDNIK syndrome harboring two compound heterozygous variants in the SNAP29 gene. The patient presents a combination of a loss-of-function SNAP29 mutation and a ∼370 kb 22q11.2 deletion, each of these genetic variants inherited from one of the parents. This report provides detailed data of a patient with unprecedented genetic events leading to the CEDNIK phenotype and may contribute to the elucidation of this rare condition.


Assuntos
Ceratodermia Palmar e Plantar , Proteínas Qc-SNARE , Brasil , Humanos , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/patologia , Mutação , Síndromes Neurocutâneas , Fenótipo , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética
2.
Am J Med Genet A ; 185(7): 2056-2064, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33880880

RESUMO

Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder characterized by anomalies mainly involving the structures derived from the first and second pharyngeal arches. The spectrum presents with heterogeneous clinical features and complex etiology with genetic factors not yet completely understood. To date, MYT1 is the most important gene unambiguously associated with the spectrum and with functional data confirmation. In this work, we aimed to identify new single nucleotide variants (SNVs) affecting MYT1 in a cohort of 73 Brazilian patients diagnosed with OAVS. In addition, we investigated copy number variations (CNVs) encompassing this gene or its cis-regulatory elements and compared the frequency of these events in patients versus a cohort of 455 Brazilian control individuals. A new SNV, predicted as likely deleterious, was identified in five unrelated patients with OAVS. All five patients presented hearing impairment and orbital asymmetry suggesting an association with the variant. CNVs near MYT1, located in its neighboring topologically associating domain (TAD), were found to be enriched in patients when compared to controls, indicating a possible involvement of this region with OAVS pathogenicity. Our findings highlight the genetic complexity of the spectrum that seems to involve more than one variant type and inheritance patterns.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Síndrome de Goldenhar/genética , Fatores de Transcrição/genética , Região Branquial/patologia , Brasil/epidemiologia , Variações do Número de Cópias de DNA/genética , Feminino , Síndrome de Goldenhar/epidemiologia , Síndrome de Goldenhar/patologia , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
3.
Hum Mutat ; 39(2): 281-291, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193635

RESUMO

We report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported. AMMECR1 is coexpressed with genes implicated in cell cycle regulation, five of which were previously associated with growth and bone alterations. Our knockdown of the zebrafish orthologous gene resulted in phenotypes reminiscent of patients' features. The increased transcript and encoded protein levels of AMMECR1L, an AMMECR1 paralog, in the t(X;9) patient's cells indicate a possible partial compensatory mechanism. AMMECR1 and AMMECR1L proteins dimerize and localize to the nucleus as suggested by their nucleic acid-binding RAGNYA folds. Our results suggest that AMMECR1 is potentially involved in cell cycle control and linked to a new syndrome with growth, bone, heart, and kidney alterations with or without elliptocytosis.


Assuntos
Osso e Ossos/fisiologia , Coração/fisiologia , Proteínas/genética , Animais , Western Blotting , Osso e Ossos/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Exoma/genética , Feminino , Células HeLa , Humanos , Masculino , Sequenciamento Completo do Genoma , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA