Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Eur J Pharmacol ; 959: 176058, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739305

RESUMO

The aberrant activation of Wnt/ß-catenin and atypical Wnt/Ryk signaling pathways in the spinal cord is critical for the development and maintenance of neuropathic pain. Crotalphine is a structural analog to a peptide first identified in Crotalus durissus terrificus snake venom, which induces antinociception by activating kappa-opioid and CB2 cannabinoid receptors. Consistent with previous data, we showed that the protein levels of the canonical Wnt/ß-catenin and the atypical Wnt/Ryk signaling pathways are increased in neuropathic rats. Importantly, the administration of crotalphine downregulates these protein levels, including its downstream cascades, such as TCF4 from the canonical pathway and NR2B glutamatergic receptor and Ca2+-dependent signals, via the Ryk receptor. The CB2 receptor antagonist, AM630, abolished the crotalphine-induced atypical Wnt/Ryk signaling pathway activation. However, the selective CB2 agonist affects both canonical and non-canonical Wnt signaling in the spinal cord. Next, we showed that crotalphine blocked hypersensitivity and significantly decreased the concentration of IL-1ɑ, IL-1ß, IL-6, IL-10, IL-18, TNF-ɑ, MIP-1ɑ and MIP-2 induced by intrathecal injection of exogenous Wnt-3a agonist. Taken together, our findings show that crotalphine induces analgesia in a neuropathic pain model by down-regulating the canonical Wnt/ß-catenin and the atypical Wnt/Ryk signaling pathways and, consequently controlling neuroinflammation. This effect is, at least in part, mediated by CB2 receptor activation. These results open a perspective for new approaches that can be used to target Wnt signaling in the context of chronic pain. PERSPECTIVE: Our work identified that crotalphine-induced activation of CB2 receptors plays a critical role in the impairment of Wnt signaling during neuropathic pain. This work suggests that drugs with opioid/cannabinoid activity may be a useful strategy to target Wnt signaling in the context of chronic pain.


Assuntos
Analgesia , Dor Crônica , Neuralgia , Ratos , Animais , beta Catenina/metabolismo , Via de Sinalização Wnt , Analgésicos Opioides , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Peptídeos/farmacologia
3.
Toxicon ; 222: 106986, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442690

RESUMO

Crotoxin (CTX) is a neurotoxin that is isolated from the venom of Crotalus durissus terrificus, which displays immunomodulatory, anti-inflammatory, and anti-tumoral effects. Previous research has demonstrated that CTX promotes the adherence of leukocytes to the endothelial cells in blood microcirculation and the high endothelial venules of lymph nodes, which reduces the number of blood cells and lymphocytes. Studies have also shown that these effects are mediated by lipoxygenase-derived mediators. However, the exact lipoxygenase-derived eicosanoid involved in the CTX effect on lymphocytes is yet to be characterized. As CTX stimulates lipoxin-derived mediators from macrophages and lymphocyte effector functions could be modulated by activating formyl peptide receptors, we aimed to investigate whether these receptors were involved in CTX-induced redistribution and functions of lymphocytes in rats. We used male Wistar rats treated with CTX to demonstrate that Boc2 (butoxycarbonyl-Phe-Leu-Phe-Leu-Phe), an antagonist of formyl peptide receptors, prevented CTX-induced decrease in the number of circulating lymphocytes and increased the expression of the lymphocyte adhesion molecule LFA1. CTX reduced the T and B lymphocyte functions, such as lymphocyte proliferation in response to the mitogen Concanavalin A and antibody production in response to BSA immunization, respectively, which was prevented by the administration of Boc2. Importantly, mesenteric lymph node lymphocytes from CTX-treated rats showed an increased release of 15-epi-LXA4. These results indicate that formyl peptide receptors mediate CTX-induced redistribution of lymphocytes and that 15-epi-LXA4 is a key mediator of the immunosuppressive effects of CTX.


Assuntos
Crotoxina , Ratos , Masculino , Animais , Crotoxina/farmacologia , Ratos Wistar , Receptores de Formil Peptídeo/metabolismo , Células Endoteliais , Linfócitos , Lipoxigenases/metabolismo , Lipoxigenases/farmacologia , Crotalus/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232883

RESUMO

Pain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated. Thus, the central effect of crotalphine was evaluated on the partial sciatic nerve ligation (PSNL)-induced chronic neuropathic pain model. Crotalphine (100 µg/kg, p.o.)-induced analgesia on the 14th day after surgery lasting up to 24 h after administration. This effect was prevented by intrathecal administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists. Besides that, crotalphine-induced analgesia was reversed by CTOP, nor-BNI, and naltrindole, antagonists of mu, kappa, and delta-opioid receptors, respectively, and also by the specific antibodies for ß-endorphin, dynorphin-A, and met-enkephalin. Likewise, the analgesic effect of crotalphine was blocked by the intrathecal administration of minocycline, an inhibitor of microglial activation and proliferation. Additionally, crotalphine decreased the PSNL-induced IL-6 release in the spinal cord. Importantly, in vitro, crotalphine inhibited LPS-induced CD86 expression and upregulated CD206 expression in BV-2 cells, demonstrating a polarization of microglial cells towards the M2 phenotype. These results demonstrated that crotalphine, besides activating opioid and cannabinoid analgesic systems, impairs central neuroinflammation, confirming the neuromodulatory mechanism involved in the crotalphine analgesic effect.


Assuntos
Analgesia , Canabinoides , Neuralgia , Aminoácidos/metabolismo , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/metabolismo , Anquirinas/metabolismo , Antagonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/uso terapêutico , Dinorfinas/metabolismo , Encefalina Metionina/metabolismo , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Microglia/metabolismo , Minociclina/uso terapêutico , Neuralgia/metabolismo , Peptídeos , Fenótipo , Receptores Opioides/metabolismo , Medula Espinal , beta-Endorfina/metabolismo
5.
Mar Drugs ; 20(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36286438

RESUMO

Neuroinflammation is a condition associated with several types of dementia, such as Alzheimer's disease (AD), mainly caused by an inflammatory response to amyloid peptides that induce microglial activation, with subsequent cytokine release. Neuronal caspase-1 from inflammasome and cathepsin B are key enzymes mediating neuroinflammation in AD, therefore, revealing new molecules to modulate these enzymes may be an interesting approach to treat neurodegenerative diseases. In this study, we searched for new caspase-1 and cathepsin B inhibitors from five species of Brazilian marine invertebrates (four cnidarians and one echinoderm). The results show that the extract of the box jellyfish Chiropsalmus quadrumanus inhibits caspase-1. This extract was fractionated, and the products monitored for their inhibitory activity, until the obtention of a pure molecule, which was identified as trigonelline by mass spectrometry. Moreover, four extracts inhibit cathepsin B, and Exaiptasia diaphana was selected for subsequent fractionation and characterization, resulting in the identification of betaine as being responsible for the inhibitory action. Both molecules are already found in marine organisms, however, this is the first study showing a potent inhibitory effect on caspase-1 and cathepsin B activities. Therefore, these new prototypes can be considered for the enzyme inhibition and subsequent control of the neuroinflammation.


Assuntos
Doença de Alzheimer , Catepsina B , Humanos , Animais , Caspase 1/farmacologia , Inflamassomos , Microglia , Doenças Neuroinflamatórias , Organismos Aquáticos , Betaína , Citocinas , Peptídeos/farmacologia , Invertebrados , Peptídeos beta-Amiloides/farmacologia
6.
Toxins (Basel) ; 13(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34941749

RESUMO

Crotalphine (CRP) is a structural analogue to a peptide that was first identified in the crude venom from the South American rattlesnake Crotalus durissus terrificus. This peptide induces a potent and long-lasting antinociceptive effect that is mediated by the activation of peripheral opioid receptors. The opioid receptor activation regulates a variety of intracellular signaling, including the mitogen-activated protein kinase (MAPK) pathway. Using primary cultures of sensory neurons, it was demonstrated that crotalphine increases the level of activated ERK1/2 and JNK-MAPKs and this increase is dependent on the activation of protein kinase Cζ (PKCζ). However, whether PKCζ-MAPK signaling is critical for crotalphine-induced antinociception is unknown. Here, we biochemically demonstrated that the systemic crotalphine activates ERK1/2 and JNK and decreases the phosphorylation of p38 in the lumbar spinal cord. The in vivo pharmacological inhibition of spinal ERK1/2 and JNK, but not of p38, blocks the antinociceptive effect of crotalphine. Of interest, the administration of a PKCζ pseudosubstrate (PKCζ inhibitor) prevents crotalphine-induced ERK activation in the spinal cord, followed by the abolishment of crotalphine-induced analgesia. Together, our results demonstrate that the PKCζ-ERK signaling pathway is involved in crotalphine-induced analgesia. Our study opens a perspective for the PKCζ-MAPK axis as a target for pain control.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dor/tratamento farmacológico , Peptídeos/farmacologia , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Comportamento Animal , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteína Quinase C/genética , Ratos , Ratos Wistar
7.
Toxins (Basel) ; 13(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34822611

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Dor/tratamento farmacológico , Peptídeos/farmacologia , Analgésicos/farmacologia , Animais , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Hiperalgesia/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/fisiopatologia , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo
8.
Biomed Res Int ; 2021: 8855248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748281

RESUMO

Neurodegenerative diseases are one of the major causes of death worldwide, characterized by neurite atrophy, neuron apoptosis, and synapse loss. No effective treatment has been indicated for such diseases so far, and the search for new drugs is being increased in the last years. Animal venoms' secretion/venom can be an alternative for the discovery of new molecules, which could be the prototype for a new treatment. Here, we present the biochemical characterization and activity of the extract from the box jellyfish Chiropsalmus quadrumanus (Cq) on neurites. The Cq methanolic extract was obtained and incubated to human SH-SY5Y neurons, and neurite parameters were evaluated. The extract was tested in other cell types to check its cytotoxicity and was submitted to biochemical analysis by mass spectrometry in order to check its composition. We could verify that the Cq extract increased neurite outgrowth length and branching junctions, amplifying the contact between SH-SY5Y neurons, without affecting cell body and viability. The extract action was selective for neurons, as it did not cause any effects on other cell types, such as tumor line, nontumor line, and red blood cells. Moreover, mass spectrometry analysis revealed that there are no proteins but several low molecular mass compounds and peptides. Three peptides, characterized as cryptides, and 14 low molecular mass compounds were found to be related to cytoskeleton reorganization, cell membrane expansion, and antioxidant/neuroprotective activity, which act together to increase neuritogenesis. After this evaluation, we conclude that the Cq extract is a promising tool for neuronal connection recovery, an essential condition for the treatment of neurodegenerative diseases.


Assuntos
Misturas Complexas/farmacologia , Cubomedusas/química , Neuritos/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Linhagem Celular Tumoral , Misturas Complexas/química , Humanos , Fármacos Neuroprotetores/química
9.
Front Immunol ; 11: 591563, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193433

RESUMO

Crotoxin (CTX), the main neurotoxin from Crotalus durissus terrificus snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 µg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.


Assuntos
Crotoxina/administração & dosagem , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Imunomodulação/efeitos dos fármacos , Dióxido de Silício , Nanomedicina Teranóstica , Animais , Biomarcadores , Biópsia , Crotoxina/efeitos adversos , Crotoxina/química , Citocinas/metabolismo , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/diagnóstico , Feminino , Camundongos , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Índice de Gravidade de Doença , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Avaliação de Sintomas
10.
Exp Cell Res ; 382(2): 111475, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31255600

RESUMO

Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-α by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno Tipo I/metabolismo , Gânglios Espinais/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática , Glicosilação , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Nitritos/metabolismo , Fosforilação , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
11.
Front Immunol ; 9: 906, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755474

RESUMO

Systemic lupus erythematosus (SLE) patients may show increased insulin resistance (IR) when compared with their healthy peers. Exercise training has been shown to improve insulin sensitivity in other insulin-resistant populations, but it has never been tested in SLE. Therefore, the aim of the present study was to assess the efficacy of a moderate-intensity exercise training program on insulin sensitivity and potential underlying mechanisms in SLE patients with mild/inactive disease. A 12-week, randomized controlled trial was conducted. Nineteen SLE patients were randomly assigned into two groups: trained (SLE-TR, n = 9) and non-trained (SLE-NT, n = 10). Before and after 12 weeks of the exercise training program, patients underwent a meal test (MT), from which surrogates of insulin sensitivity and beta-cell function were determined. Muscle biopsies were performed after the MT for the assessment of total and membrane GLUT4 and proteins related to insulin signaling [Akt and AMP-activated protein kinase (AMPK)]. SLE-TR showed, when compared with SLE-NT, significant decreases in fasting insulin [-39 vs. +14%, p = 0.009, effect size (ES) = -1.0] and in the insulin response to MT (-23 vs. +21%, p = 0.007, ES = -1.1), homeostasis model assessment IR (-30 vs. +15%, p = 0.005, ES = -1.1), a tendency toward decreased proinsulin response to MT (-19 vs. +6%, p = 0.07, ES = -0.9) and increased glucagon response to MT (+3 vs. -3%, p = 0.09, ES = 0.6), and significant increases in the Matsuda index (+66 vs. -31%, p = 0.004, ES = 0.9) and fasting glucagon (+4 vs. -8%, p = 0.03, ES = 0.7). No significant differences between SLT-TR and SLT-NT were observed in fasting glucose, glucose response to MT, and insulinogenic index (all p > 0.05). SLE-TR showed a significant increase in AMPK Thr 172 phosphorylation when compared to SLE-NT (+73 vs. -12%, p = 0.014, ES = 1.3), whereas no significant differences between groups were observed in Akt Ser 473 phosphorylation, total and membrane GLUT4 expression, and GLUT4 translocation (all p > 0.05). In conclusion, a 12-week moderate-intensity aerobic exercise training program improved insulin sensitivity in SLE patients with mild/inactive disease. This effect appears to be partially mediated by the increased insulin-stimulated skeletal muscle AMPK phosphorylation. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT01515163.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Exercício Físico , Resistência à Insulina , Lúpus Eritematoso Sistêmico/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Biópsia , Glicemia , Feminino , Glucagon/sangue , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/sangue , Lúpus Eritematoso Sistêmico/genética , Masculino , Músculo Esquelético/enzimologia , Fosforilação , Transdução de Sinais
12.
Toxicon ; 136: 44-55, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28688804

RESUMO

Neutrophils have a critical role in the innate immune response; these cells represent the primary line of defense against invading pathogens or tissue injury. Crotoxin (CTX), the major toxin of the South American rattlesnake (Crotalus durissus terrificus) venom, presents longstanding anti-inflammatory properties, inhibiting neutrophil migration and phagocytosis by peritoneal neutrophils for 14 days. Herein, to elucidate these sustained inhibitory effects induced by CTX, we performed in vitro and in vivo studies evaluating the functionality of bone marrow neutrophils and possible molecular mechanisms associated with these effects. CTX inhibited the processes of chemotaxis, adhesion to fibronectin, and phagocytosis of opsonized particles; however, it did not affect ROS production or degranulation in bone marrow neutrophils. To understand the molecular mechanisms that orchestrate this effect, we investigated the expression of CR3 on the neutrophil surface and the total expression and activity of signaling proteins from the Syk-GTPase pathway, which is involved in actin polymerization. CTX down-regulated both subunits of CR3, as well as, the activity of Syk, Vav1, Cdc42, Rac1 and RhoA, and the expression of the subunit 1B from Arp2/3. Together, our findings demonstrated that CTX inhibits the functionally of bone marrow neutrophils and that this effect may be associated with an impairment of the Syk-GTPase pathway. This study demonstrates, for the first time, that the sustained down-modulatory effect of CTX on circulating and peritoneal neutrophils is associated with functional modifications of neutrophils still in the bone marrow, and it also contributes to a better understanding of the anti-inflammatory effect of CTX.


Assuntos
Crotalus , Crotoxina/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Adesão Celular , Quimiotaxia , Fibronectinas , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Complemento , Transdução de Sinais
13.
Annu Rev Pharmacol Toxicol ; 55: 107-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25292432

RESUMO

Asian Americans are one of the fastest-growing populations in the United States. A relatively large subset of this population carries a unique loss-of-function point mutation in aldehyde dehydrogenase 2 (ALDH2), ALDH2*2. Found in approximately 560 million people of East Asian descent, ALDH2*2 reduces enzymatic activity by approximately 60% to 80% in heterozygotes. Furthermore, this variant is associated with a higher risk for several diseases affecting many organ systems, including a particularly high incidence relative to the general population of esophageal cancer, myocardial infarction, and osteoporosis. In this review, we discuss the pathophysiology associated with the ALDH2*2 variant, describe why this variant needs to be considered when selecting drug treatments, and suggest a personalized medicine approach for Asian American carriers of this variant. We also discuss future clinical and translational perspectives regarding ALDH2*2 research.


Assuntos
Aldeído Desidrogenase/genética , Asiático/genética , Farmacogenética/métodos , Mutação Puntual , Medicina de Precisão , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial , Animais , Análise Mutacional de DNA , Técnicas de Apoio para a Decisão , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/enzimologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etnologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Frequência do Gene , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Segurança do Paciente , Seleção de Pacientes , Farmacocinética , Fenótipo , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco
14.
Behav Pharmacol ; 23(1): 14-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22126967

RESUMO

Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K⁺ channels. Crotalphine (0.2 or 5 µg/kg, orally; 0.0006 µg/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of δ-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of κ-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K⁺ channel blocker. The results suggest that peripheral δ-opioid and κ-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K⁺ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain.


Assuntos
Analgésicos/farmacologia , Arginina/fisiologia , GMP Cíclico/fisiologia , Canais KATP/fisiologia , Neuralgia/tratamento farmacológico , Óxido Nítrico/fisiologia , Peptídeos/farmacologia , Animais , Masculino , Ratos , Ratos Wistar , Receptores Opioides delta/fisiologia , Receptores Opioides kappa/fisiologia , Transdução de Sinais/fisiologia
15.
Toxicon ; 55(6): 1045-60, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20109480

RESUMO

Crotoxin, the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom, was the first snake venom protein to be purified and crystallized. Crotoxin is a heterodimeric beta-neurotoxin that consists of a weakly toxic basic phospholipase A(2) and a non-enzymatic, non-toxic acidic component (crotapotin). The classic biological activities normally attributed to crotoxin include neurotoxicity, myotoxicity, nephrotoxicity and cardiotoxicity. However, numerous studies in recent years have shown that crotoxin also has immunomodulatory, anti-inflammatory, anti-microbial, anti-tumor and analgesic actions. In this review, we describe the historical background to the discovery of crotoxin and its main toxic activities and then discuss recent structure-function studies and investigations that have led to the identification of novel pharmacological activities for the toxin.


Assuntos
Crotalus/fisiologia , Crotoxina/farmacologia , Neurotoxinas/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Crotoxina/análise , Crotoxina/química , Dimerização , Modelos Animais de Doenças , Humanos , Imunomodulação/efeitos dos fármacos , Neurotoxinas/química , Fosfolipases A2/análise , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
16.
Peptides ; 29(8): 1293-304, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18495297

RESUMO

We have shown that the venom of the South American rattlesnake Crotalus durissus terrificus induces a long-lasting antinociceptive effect mediated by activation of kappa- and delta-opioid receptors. Despite being mediated by opioid receptors, prolonged treatment with the crotalid venom does not cause the development of peripheral tolerance or abstinence symptoms upon withdrawal. In the present study, we have isolated and chemically characterized a novel and potent antinociceptive peptide responsible for the oral opioid activity of this crotalid venom. The amino acid sequence of this peptide, designated crotalphine, was determined by mass spectrometry and corroborated by solid-phase synthesis to be

Assuntos
Analgésicos/química , Analgésicos/farmacologia , Venenos de Crotalídeos/química , Crotalus , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Analgésicos/isolamento & purificação , Animais , Crotoxina/química , Relação Dose-Resposta a Droga , Masculino , Dados de Sequência Molecular , Medição da Dor/efeitos dos fármacos , Peptídeos/isolamento & purificação , Ratos , Ratos Endogâmicos BB , América do Sul , Espectrometria de Massas por Ionização por Electrospray
17.
Toxicon ; 51(8): 1357-67, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18452962

RESUMO

Crotoxin is the main neurotoxic component of Crotalus durissus terrificus snake venom and modulates immune and inflammatory responses, interfering with the activity of leukocytes. In the present work, the effects of crotoxin on the number of blood and lymphatic leukocytes and on lymph nodes and spleen lymphocytes population were investigated. The toxin s.c. administered to male Wistar rats, decreases the number of lymphocytes in blood and lymph circulation and increases the content of B and T-lymphocytes in lymph nodes. These effects were detected 1-2h after treatment. The crotoxin molecule is composed of two subunits, an acidic non-toxic polypeptide, named crotapotin and a toxic basic phospholipase A(2) (PLA(2)). PLA(2), but not crotapotin, decreased the number of circulating blood and lymph lymphocytes. Crotoxin promotes leukocyte adherence to endothelial cells of blood microcirculation and to lymph node high endothelial venules, which might contribute to the drop in the number of circulating lymphocytes. Crotoxin increases expression of the adhesion molecule LFA-1 in lymphocytes. The changes in the expression of the adhesion molecule might contribute, at least in part, for the increased leukocyte adhesion to endothelium. Zileuton, a 5-lipoxygenase inhibitor, blocked the decrease in the number of circulating leukocytes induced by crotoxin and also abolished the changes observed in leukocyte-endothelial interactions, suggesting the involvement of lipoxygenase-derived mediators in the effects of the toxin.


Assuntos
Moléculas de Adesão Celular/fisiologia , Crotoxina/farmacologia , Lipoxigenase/fisiologia , Linfócitos/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Crotoxina/química , Eicosanoides/metabolismo , Eicosanoides/fisiologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hidroxiureia/análogos & derivados , Hidroxiureia/farmacologia , Inibidores de Lipoxigenase/farmacologia , Linfa/citologia , Linfa/metabolismo , Linfonodos/citologia , Linfonodos/metabolismo , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Contagem de Linfócitos , Linfócitos/sangue , Masculino , Fosfolipases A2/farmacologia , Ratos , Ratos Wistar , Baço/citologia , Baço/metabolismo , Ducto Torácico/citologia , Ducto Torácico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA