Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 187, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002813

RESUMO

BACKGROUND: Kisspeptins are neuropeptides that regulate reproductive maturation in mammals via G-protein-coupled receptor-mediated stimulation of gonadotropin-releasing hormone secretion from the hypothalamus. Phylogenetic analysis of kisspeptin-type receptors indicates that this neuropeptide signaling system originated in a common ancestor of the Bilateria, but little is known about kisspeptin signaling in invertebrates. RESULTS: Contrasting with the occurrence of a single kisspeptin receptor in mammalian species, here, we report the discovery of an expanded family of eleven kisspeptin-type receptors in a deuterostome invertebrate - the starfish Asterias rubens (phylum Echinodermata). Furthermore, neuropeptides derived from four precursor proteins were identified as ligands for six of these receptors. One or more kisspeptin-like neuropeptides derived from two precursor proteins (ArKPP1, ArKPP2) act as ligands for four A. rubens kisspeptin-type receptors (ArKPR1,3,8,9). Furthermore, a family of neuropeptides that act as muscle relaxants in echinoderms (SALMFamides) are ligands for two A. rubens kisspeptin-type receptors (ArKPR6,7). The SALMFamide neuropeptide S1 (or ArS1.4) and a 'cocktail' of the seven neuropeptides derived from the S1 precursor protein (ArS1.1-ArS1.7) act as ligands for ArKPR7. The SALMFamide neuropeptide S2 (or ArS2.3) and a 'cocktail' of the eight neuropeptides derived from the S2 precursor protein (ArS2.1-ArS2.8) act as ligands for ArKPR6. CONCLUSIONS: Our findings reveal a remarkable diversity of neuropeptides that act as ligands for kisspeptin-type receptors in starfish and provide important new insights into the evolution of kisspeptin signaling. Furthermore, the discovery of the hitherto unknown relationship of kisspeptins with SALMFamides, neuropeptides that were discovered in starfish prior to the identification of kisspeptins in mammals, presents a radical change in perspective for research on kisspeptin signaling.


Assuntos
Kisspeptinas , Neuropeptídeos , Sequência de Aminoácidos , Animais , Equinodermos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Ligantes , Mamíferos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Filogenia , Estrelas-do-Mar
2.
Open Biol ; 10(9): 200172, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898470

RESUMO

Somatostatin (SS) and allatostatin-C (ASTC) are structurally and evolutionarily related neuropeptides that act as inhibitory regulators of physiological processes in mammals and insects, respectively. Here, we report the first molecular and functional characterization of SS/ASTC-type signalling in a deuterostome invertebrate-the starfish Asterias rubens (phylum Echinodermata). Two SS/ASTC-type precursors were identified in A. rubens (ArSSP1 and ArSSP2) and the structures of neuropeptides derived from these proteins (ArSS1 and ArSS2) were analysed using mass spectrometry. Pharmacological characterization of three cloned A. rubens SS/ASTC-type receptors (ArSSR1-3) revealed that ArSS2, but not ArSS1, acts as a ligand for all three receptors. Analysis of ArSS2 expression in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed stained cells/fibres in the central nervous system, the digestive system (e.g. cardiac stomach) and the body wall and its appendages (e.g. tube feet). Furthermore, in vitro pharmacological tests revealed that ArSS2 causes dose-dependent relaxation of tube foot and cardiac stomach preparations, while injection of ArSS2 in vivo causes partial eversion of the cardiac stomach. Our findings provide new insights into the molecular evolution of SS/ASTC-type signalling in the animal kingdom and reveal an ancient role of SS-type neuropeptides as inhibitory regulators of muscle contractility.


Assuntos
Equinodermos/metabolismo , Transdução de Sinais , Somatostatina/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Equinodermos/classificação , Equinodermos/genética , Evolução Molecular , Expressão Gênica , Ordem dos Genes , Imuno-Histoquímica , Hibridização In Situ , Relaxamento Muscular/efeitos dos fármacos , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Filogenia , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Somatostatina/química , Somatostatina/genética , Estrelas-do-Mar/classificação , Estrelas-do-Mar/genética , Estrelas-do-Mar/metabolismo
3.
Plant Physiol ; 183(3): 1391-1404, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32321844

RESUMO

Self-incompatibility (SI) is used by many angiosperms to prevent self-fertilization and inbreeding. In common poppy (Papaver rhoeas), interaction of cognate pollen and pistil S-determinants triggers programmed cell death (PCD) of incompatible pollen. We previously identified that reactive oxygen species (ROS) signal to SI-PCD. ROS-induced oxidative posttranslational modifications (oxPTMs) can regulate protein structure and function. Here, we have identified and mapped oxPTMs triggered by SI in incompatible pollen. Notably, SI-induced pollen had numerous irreversible oxidative modifications, while untreated pollen had virtually none. Our data provide a valuable analysis of the protein targets of ROS in the context of SI-induction and comprise a benchmark because currently there are few reports of irreversible oxPTMs in plants. Strikingly, cytoskeletal proteins and enzymes involved in energy metabolism are a prominent target of ROS. Oxidative modifications to a phosphomimic form of a pyrophosphatase result in a reduction of its activity. Therefore, our results demonstrate irreversible oxidation of pollen proteins during SI and provide evidence that this modification can affect protein function. We suggest that this reduction in cellular activity could lead to PCD.


Assuntos
Papaver/fisiologia , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Autoincompatibilidade em Angiospermas/fisiologia , Actinas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peróxido de Hidrogênio/toxicidade , Pirofosfatase Inorgânica/metabolismo , Nitrosação , Oxirredução , Papaver/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/química , Pólen/efeitos dos fármacos , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Autoincompatibilidade em Angiospermas/efeitos dos fármacos , Solubilidade
4.
J Comp Neurol ; 525(7): 1599-1617, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27806429

RESUMO

Gamete maturation and spawning in starfish is triggered by a gonad-stimulating substance (GSS), which is present in extracts of the radial nerve cords. Purification of GSS from the starfish Patiria pectinifera identified GSS as a relaxin-like polypeptide, which is now known as relaxin-like gonad-stimulating peptide (RGP). Cells expressing RGP in the radial nerve cord of P. pectinifera have been visualized, but the presence of RGP-expressing cells in other parts of the starfish body has not been investigated. Here we addressed this issue in the starfish Asterias rubens. An A. rubens RGP (AruRGP) precursor cDNA was sequenced and the A chain and B chain that form AruRGP were detected in A. rubens radial nerve cord extracts using mass spectrometry. Comparison of the bioactivity of AruRGP and P. pectinifera RGP (PpeRGP) revealed that both polypeptides induce oocyte maturation and ovulation in A. rubens ovarian fragments, but AruRGP is more potent than PpeRGP. Analysis of the expression of AruRGP in A. rubens using mRNA in situ hybridization revealed cells expressing RGP in the radial nerve cords, circumoral nerve ring, and tube feet. Furthermore, a band of RGP-expressing cells was identified in the body wall epithelium lining the cavity that surrounds the sensory terminal tentacle and optic cushion at the tips of the arms. Discovery of these RGP-expressing cells closely associated with sensory organs in the arm tips is an important finding because these cells are candidate physiological mediators for hormonal control of starfish spawning in response to environmental cues. J. Comp. Neurol. 525:1599-1617, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Hormônios de Invertebrado/metabolismo , Relaxina/metabolismo , Comportamento Sexual Animal/fisiologia , Estrelas-do-Mar/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Hibridização In Situ , Espectrometria de Massas , Peptídeos/metabolismo , Filogenia , Reação em Cadeia da Polimerase
5.
Chem Commun (Camb) ; 50(2): 198-200, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24217599

RESUMO

The helix-forming character of a model decapeptide, L4PL4K, is determined in the absence of solvent using ion mobility mass spectrometry, electron capture dissociation and molecular mechanics simulations. Unusual ECD fragmentation patterns dominated by b ions are attributed to helix formation upon electron capture and as a signature of conformational dynamics.


Assuntos
Oligopeptídeos/química , Sequência de Aminoácidos , Gases/química , Espectrometria de Massas , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína
6.
Anal Chem ; 76(17): 5172-9, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15373458

RESUMO

Electrospray ionization (ESI) is extensively used in the analysis of biological compounds; yet some fundamental properties of this technique are not completely understood. It is widely recognized that care should be exercised when noncovalent complexes are being studied by ESI, since weak noncovalent binding can be broken or formed during the desolvation process. In the present work, spectra from the noncovalent complex, vancomycin/diacetyl-L-lysyl-D-alanyl-D-alanine, obtained from ESI and from nanoelectrospray ionization (nanoESI), have been compared. The results indicated that the milder desolvation conditions arising as a result of the smaller sizes of droplets produced in the nanoESI source attenuated effects upon weak bonds in the desolvation process. The association constant values calculated from the relative peak intensities suggest that, when using ESI, the analyzed noncovalent complex dissociated in the condensed phase during the spraying process. The influences of experimental parameters such as tip diameter and coating for nanoESI needles were investigated. Principal component analysis, a multivariate analysis method, was applied to achieve a better evaluation of the spectra obtained using different needle diameters and coatings for the analysis of the noncovalent complex vancomycin/diacetyl-L-lysyl-D-alanyl-D-alanine. It was found that 2-microm tip diameter resulted in more reproducible spectra than the larger tip diameters tested (6-20 microm).


Assuntos
Ciclotrons , Nanotecnologia/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise de Fourier , Oligopeptídeos/química , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Vancomicina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA