Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535792

RESUMO

Five peptides were isolated from the venom of the Mexican scorpion Centruroides bonito by chromatographic procedures (molecular weight sieving, ion exchange columns, and HPLC) and were denoted Cbo1 to Cbo5. The first four peptides contain 66 amino acid residues and the last one contains 65 amino acids, stabilized by four disulfide bonds, with a molecular weight spanning from about 7.5 to 7.8 kDa. Four of them are toxic to mice, and their function on human Na+ channels expressed in HEK and CHO cells was verified. One of them (Cbo5) did not show any physiological effects. The ones toxic to mice showed that they are modifiers of the gating mechanism of the channels and belong to the beta type scorpion toxin (ß-ScTx), affecting mainly the Nav1.6 channels. A phylogenetic tree analysis of their sequences confirmed the high degree of amino acid similarities with other known bona fide ß-ScTx. The envenomation caused by this venom in mice is treated by using commercially horse antivenom available in Mexico. The potential neutralization of the toxic components was evaluated by means of surface plasmon resonance using four antibody fragments (10FG2, HV, LR, and 11F) which have been developed by our group. These antitoxins are antibody fragments of single-chain antibody type, expressed in E. coli and capable of recognizing Cbo1 to Cbo4 toxins to various degrees.


Assuntos
Animais Peçonhentos , Perciformes , Peçonhas , Humanos , Cricetinae , Animais , Cavalos , Camundongos , Escorpiões , Cricetulus , Escherichia coli , Filogenia , Antivenenos , Aminoácidos , Fragmentos de Imunoglobulinas , Peptídeos
2.
Toxicon ; 237: 107528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013057

RESUMO

Viperids of the genus Lachesis, also known as bushmasters, are capable of injecting great amounts of venom that cause severe envenomation incidents. Since phospholipases type A2 are mainly involved in edema and myonecrosis within the snakebite sites, in this work, the isolation, amino acid sequence and biochemical characterization of the first phospholipase type A2 from the venom of Lachesis acrochorda, named Lacro_PLA2, is described. Lacro_PLA2 is an acidic aspartic 49 calcium-dependent phospholipase A2 with 93% similarity to the L. stenophrys phospholipase. Lacro_PLA2 has a molecular mass of 13,969.7 Da and an experimental isoelectric point around 5.3. A combination of N-terminal Edman degradation and MS/MS spectrometry analyses revealed that Lacro_PLA2 contains 122 residues including 14 cysteines that form 7 disulfide bridges. A predicted 3D model shows a high resemblance to other viperid phospholipases. Nevertheless, immunochemical and phospholipase neutralization tests revealed a notorious level of immunorecognition of the isolated protein by two polyclonal antibodies from viperids from different genus, which suggest that Lacro_PLA2 resembles more to bothropic phospholipases. Lacro_PLA2 also showed significantly high edema activity when was injected into mice; so, it could be an alternative antigen in the development of antibodies against toxins of this group of viperids, seeking to improve commercial polyclonal antivenoms.


Assuntos
Crotalinae , Viperidae , Animais , Camundongos , Viperidae/metabolismo , Espectrometria de Massas em Tandem , Fosfolipases A2/química , Venenos de Víboras/toxicidade , Edema/induzido quimicamente
3.
Toxins (Basel) ; 15(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37624263

RESUMO

Seven new peptides denominated CboK1 to CboK7 were isolated from the venom of the Mexican scorpion Centruroides bonito and their primary structures were determined. The molecular weights ranged between 3760.4 Da and 4357.9 Da, containing 32 to 39 amino acid residues with three putative disulfide bridges. The comparison of amino acid sequences with known potassium scorpion toxins (KTx) and phylogenetic analysis revealed that CboK1 (α-KTx 10.5) and CboK2 (α-KTx 10.6) belong to the α-KTx 10.x subfamily, whereas CboK3 (α-KTx 2.22), CboK4 (α-KTx 2.23), CboK6 (α-KTx 2.21), and CboK7 (α-KTx 2.24) bear > 95% amino acid similarity with members of the α-KTx 2.x subfamily, and CboK5 is identical to Ce3 toxin (α-KTx 2.10). Electrophysiological assays demonstrated that except CboK1, all six other peptides blocked the Kv1.2 channel with Kd values in the picomolar range (24-763 pM) and inhibited the Kv1.3 channel with comparatively less potency (Kd values between 20-171 nM). CboK3 and CboK4 inhibited less than 10% and CboK7 inhibited about 42% of Kv1.1 currents at 100 nM concentration. Among all, CboK7 showed out-standing affinity for Kv1.2 (Kd = 24 pM), as well as high selectivity over Kv1.3 (850-fold) and Kv1.1 (~6000-fold). These characteristics of CboK7 may provide a framework for developing tools to treat Kv1.2-related channelopathies.


Assuntos
Perciformes , Escorpiões , Animais , Filogenia , Peptídeos/farmacologia , Aminoácidos
4.
Toxicon ; 227: 107082, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36948303

RESUMO

In recent years, morbidity caused by scorpion sting of the species Tityus championi has increased in Panama. Therefore, the LD50 was determined by intravenous injection in 2.9 mg/kg and the venom of T. championi was separated using a HPLC system and their fractions were tested for biological activities in mice to identify the most toxic fractions to mammals. In addition, the venom fractions were also tested against invertebrates to look for insect-specific toxin peptides. The most toxic fractions were analyzed by MS/MS spectrometry. The primary structures of T. championi venom peptides with the most relevant activity were obtained, and the primary structure of one of most neurotoxic peptides was found at least in other four species of Tityus from Panama. This neurotoxin is quite important to be used as a protein target to be neutralized if developing antivenoms against the sting of this Panamanian scorpion or other relevant species of genera Tityus in the country.


Assuntos
Venenos de Escorpião , Peçonhas , Animais , Camundongos , Peçonhas/metabolismo , Escorpiões/química , Proteômica , Espectrometria de Massas em Tandem , Peptídeos/química , Venenos de Escorpião/química , Mamíferos/metabolismo
5.
Toxins (Basel) ; 15(1)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36668861

RESUMO

A novel peptide, Cm39, was identified in the venom of the scorpion Centruroides margaritatus. Its primary structure was determined. It consists of 37 amino acid residues with a MW of 3980.2 Da. The full chemical synthesis and proper folding of Cm39 was obtained. Based on amino acid sequence alignment with different K+ channel inhibitor scorpion toxin (KTx) families and phylogenetic analysis, Cm39 belongs to the α-KTx 4 family and was registered with the systematic number of α-KTx 4.8. Synthetic Cm39 inhibits the voltage-gated K+ channel hKV1.2 with high affinity (Kd = 65 nM). The conductance-voltage relationship of KV1.2 was not altered in the presence of Cm39, and the analysis of the toxin binding kinetics was consistent with a bimolecular interaction between the peptide and the channel; therefore, the pore blocking mechanism is proposed for the toxin-channel interaction. Cm39 also inhibits the Ca2+-activated KCa2.2 and KCa3.1 channels, with Kd = 502 nM, and Kd = 58 nM, respectively. However, the peptide does not inhibit hKV1.1, hKV1.3, hKV1.4, hKV1.5, hKV1.6, hKV11.1, mKCa1.1 K+ channels or the hNaV1.5 and hNaV1.4 Na+ channels at 1 µM concentrations. Understanding the unusual selectivity profile of Cm39 motivates further experiments to reveal novel interactions with the vestibule of toxin-sensitive channels.


Assuntos
Venenos de Escorpião , Humanos , Animais , Venenos de Escorpião/química , Filogenia , Bloqueadores dos Canais de Potássio/química , Sequência de Aminoácidos , Peptídeos/química , Escorpiões/química
6.
J Gen Physiol ; 154(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699659

RESUMO

The Cm28 in the venom of Centruroides margaritatus is a short peptide consisting of 27 amino acid residues with a mol wt of 2,820 D. Cm28 has <40% similarity with other known α-KTx from scorpions and lacks the typical functional dyad (lysine-tyrosine) required to block KV channels. However, its unique sequence contains the three disulfide-bond traits of the α-KTx scorpion toxin family. We propose that Cm28 is the first example of a new subfamily of α-KTxs, registered with the systematic number α-KTx32.1. Cm28 inhibited voltage-gated K+ channels KV1.2 and KV1.3 with Kd values of 0.96 and 1.3 nM, respectively. There was no significant shift in the conductance-voltage (G-V) relationship for any of the channels in the presence of toxin. Toxin binding kinetics showed that the association and dissociation rates are consistent with a bimolecular interaction between the peptide and the channel. Based on these, we conclude that Cm28 is not a gating modifier but rather a pore blocker. In a selectivity assay, Cm28 at 150 nM concentration (>100× Kd value for KV1.3) did not inhibit KV1.5, KV11.1, KCa1.1, and KCa3.1 K+ channels; NaV1.5 and NaV1.4 Na+ channels; or the hHV1 H+ channel but blocked ∼27% of the KV1.1 current. In a biological functional assay, Cm28 strongly inhibited the expression of the activation markers interleukin-2 receptor and CD40 ligand in anti-CD3-activated human CD4+ effector memory T lymphocytes. Cm28, due to its unique structure, may serve as a template for the generation of novel peptides targeting KV1.3 in autoimmune diseases.


Assuntos
Venenos de Escorpião , Sequência de Aminoácidos , Animais , Humanos , Peptídeos/química , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Escorpiões/química , Escorpiões/metabolismo
7.
J Virol ; 96(14): e0066522, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35762760

RESUMO

Human astrovirus VA1 has been associated with neurological disease in immunocompromised patients, and its recent propagation in cell culture has opened the possibility to study its biology. Unlike classical human astroviruses, VA1 growth was found to be independent of trypsin during virus replication in vitro. In this work, we show that despite its independence on trypsin activation for cell infection, the VA1 capsid precursor protein, of 86 kDa (VP86), is processed intracellularly, and this proteolytic processing is important for astrovirus VA1 infectivity. Antibodies raised against different regions of the capsid precursor showed that the polyprotein can be processed starting at either its amino- or carboxy-terminal end, and they allowed us to identify those proteins of about 33 (VP33) and 38 (VP38) kDa constitute the core and the spike proteins of the mature infectious virus particles, respectively. The amino-terminal end of the spike protein was found to be Thr-348. Whether the protease involved in intracellular cleavage of the capsid precursor is of viral or cellular origin remains to be determined, but the cleavage is independent of caspases. Also, trypsin is able to degrade the capsid precursor but has no effect on VP33 and VP38 proteins when assembled into virus particles. These studies provide the basis for advancement of the knowledge of astrovirus VA1 cell entry and replication. IMPORTANCE Human astrovirus VA1 has been associated with neurological disease in immunocompromised patients. Its recent propagation in cell culture has facilitated the study of its biology. In this work, we show that despite the ability of this virus to grow in the absence of trypsin, a marked feature of human classical astroviruses, the capsid precursor protein of astrovirus VA1 is cleaved intracellularly to yield the mature infectious particles, formed by two polypeptides, VP33 that constitutes the core domain of the virus particle, and VP38 that forms the spike of the virus. These studies provide a platform to advance our knowledge on astrovirus VA1 cell entry and replication.


Assuntos
Infecções por Astroviridae , Proteínas do Capsídeo , Mamastrovirus , Precursores de Proteínas , Infecções por Astroviridae/virologia , Células CACO-2 , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Humanos , Espaço Intracelular/virologia , Mamastrovirus/fisiologia , Precursores de Proteínas/metabolismo , Tripsina/metabolismo
8.
Peptides ; 153: 170785, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35307452

RESUMO

The venoms of Conus snails contain neuroactive peptides named conotoxins (CTXs). Some CTXs are nicotinic acetylcholine receptor (nAChRs) antagonists. nAChRs modulate the release of neurotransmitters and are implicated in several pathophysiologies. One venom peptide from Conus archon, a vermivorous species from the Mexican Pacific, was purified by RP-HPLC and its activity on human α7, α3ß2, and α7ß2 nAChRs was assessed by the two-electrode voltage clamp technique. At 36.3 µM the purified peptide (F27-1, renamed tentatively ArchIIIA) slowly reversibly inhibited the ACh-induced response of the hα7 subtype by 44.52 ± 5.83%, while it had low or no significant effect on the response of the hα3ß2 and hα7ß2 subtypes; the EC50 of the inhibiting effect was 45.7 µM on the hα7 subtype. This peptide has 15 amino acid residues and a monoisotopic mass of 1654.6 Da (CCSALCSRYHCLPCC), with three disulfide bridges and a free C-terminus. This sequence with a CC-C-C-CC arrangement (framework III) belongs to the M superfamily of conotoxins, corresponding to the mini-M´s (M-1-M-3) conotoxins; due to its size and inter-Cys spacings it is an M-2 conotoxin. This toxin is a novel mini-M conotoxin affecting ligand-gated ion channels, like the maxi-M CTX ψ-conotoxins and α-MIIIJ conotoxin (nAChRs blockers). This peptide seems to be homologous to the reg3b conotoxin (from Conus regius) with an identity of 93.3%, differing only in the third residue in the sequence, serine for threonine, both uncharged polar residues. We obtained, in silico, a probable 3D structure, which is consistent with its effect on neuronal subtypes.


Assuntos
Conotoxinas , Caramujo Conus , Antagonistas Nicotínicos , Receptores Nicotínicos , Animais , Conotoxinas/química , Conotoxinas/farmacologia , Caramujo Conus/química , Humanos , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologia , Peptídeos/metabolismo , Receptores Nicotínicos/metabolismo
9.
Insect Biochem Mol Biol ; 124: 103416, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32592834

RESUMO

Almost all marine snails within superfamily Conoidea produce venoms containing numerous neuroactive peptides. Most toxins characterized from members of this superfamily are produced by species belonging to family Conidae. These toxins (conotoxins) affect diverse membrane proteins, such as voltage- and ligand-gated ion channels, including nicotinic acetylcholine receptors (nAChRs). Family Turridae has been considerably less studied than their Conidae counterpart and, therefore, turrid toxins (turritoxins) have just been barely described. Consequently, in this work the most prominent chromatographic (RP-HPLC) fractions from the East Pacific species Polystira nobilis venom duct extract were isolated. The biological activity of six selected fractions was assayed on human (h) α7 AChRs expressed in Xenopus laevis oocytes. One of these fractions, F21, inhibited the acetylcholine-elicited response by 62 ± 12%. Therefore, this fraction was further purified and the F21-2 peptide was obtained. This peptide (at 5.6 µM) strongly and irreversibly inhibited the acetylcholine-induced response on hα7 and hα3ß2 nAChRs, by 55 ± 4 and 91 ± 1%, respectively. Electrospray mass spectrometry indicates that the average molecular mass of this toxin is 12 358.80 Da. The affinity for hα3ß2 nAChRs is high (IC50 of 566.2 nM). A partial sequence without cysteines was obtained by automated Edman degradation: WFRSFKSYYGHHGSVYRPNEPNFRSFAS…; blastp search revealed that this sequence has low similarity to some non-Cys-containing turripeptides. This is the first report of a turritoxin from a species of the American Pacific and the second description of a turripeptide inhibiting nAChRs.


Assuntos
Conotoxinas/farmacologia , Venenos de Moluscos , Receptores Nicotínicos/efeitos dos fármacos , Animais , Humanos , Venenos de Moluscos/química , Venenos de Moluscos/isolamento & purificação , Venenos de Moluscos/metabolismo , Venenos de Moluscos/toxicidade , Oócitos , Proteínas Recombinantes/farmacologia , Caramujos/metabolismo , Xenopus laevis
10.
Toxins (Basel) ; 11(7)2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336928

RESUMO

Conus snails produce venoms containing numerous peptides such as the α-conotoxins (α-CTXs), which are well-known nicotinic acetylcholine receptor (nAChR) antagonists. Thirty-eight chromatographic fractions from Conus princeps venom extract were isolated by RP-HPLC. The biological activities of 37 fractions (0.07 µg/µL) were assayed by two-electrode voltage clamp on human α7 nAChRs expressed in Xenopus laevis oocytes. Fractions F7 and F16 notably inhibited the response elicited by acetylcholine by 52.7 ± 15.2% and 59.6 ± 2.5%, respectively. Fraction F7 was purified, and an active peptide (F7-3) was isolated. Using a combination of Edman degradation, mass spectrometry, and RNASeq, we determined the sequence of peptide F7-3: AVKKTCIRSTOGSNWGRCCLTKMCHTLCCARSDCTCVYRSGKGHGCSCTS, with one hydroxyproline (O) and a free C-terminus. The average mass of this peptide, 10,735.54 Da, indicates that it is a homodimer of identical subunits, with 10 disulfide bonds in total. This peptide is clearly similar to αD-CTXs from species of the Indo-Pacific. Therefore, we called it αD-PiXXA. This toxin slowly and reversibly inhibited the ACh-induced response of the hα7 nAChR subtype, with an IC50 of 6.2 µM, and it does not affect the hα3ß2 subtype at 6.5 µM.


Assuntos
Conotoxinas/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Receptores Nicotínicos/fisiologia , Sequência de Aminoácidos , Animais , Caramujo Conus , Feminino , México , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Peptídeos/química , Xenopus laevis
11.
Toxicon ; 153: 23-31, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30153434

RESUMO

A proteomic analysis of the soluble venom of the coral snake Micrurus pyrrhocryptus is reported in this work. The whole soluble venom was separated by RP-HPLC and the molecular weights of its components (over 100) were determined by mass spectrometry. Three main sets of components were identified, corresponding to peptides with molecular masses from 5 to 8 kDa, proteins from 12 to 16 kDa and proteins from 20 to 30 kDa. Two components were fully sequenced: one α-neurotoxic peptide of 7210 Da with slight blocking activity of the nicotinic acetylcholine receptor (nAChR) and a phospholipase A2 (PLA2) with molecular weight 13517 Da and no effect on the nAChR. PLA2 activity was evaluated for all RP-HPLC components. In addition, N-terminal sequence was obtained for eleven components using Edman degradation. Among these, three were similar to known PLA2's, six to three-finger toxins (3FTx) and one to Kunitz-type serine protease inhibitors. Two-dimensional gel electrophoresis of the venom allowed the separation of about thirty spots with components of molecular weights from 25 to 70 kDa. Seventeen spots were recovered from the gel, digested with trypsin and the corresponding peptides (85) were sequenced by MS/MS allowing identification of amino acid sequences with similarities to snake venom metalloproteases (SVMP), PLA2's, L-amino acid oxidases (LAAO), acetylcholinesterases (AChE) and serine proteases (SP). In addition, LC-MS analysis of peptides obtained from tryptic digestion of whole soluble venom allowed the identification of 695 peptides, whose amino acid sequence could correspond to at least 355 components found in other snake venoms, where C-type lectins, vespryns, zinc finger proteins, and waprins were found, among others. These results show the complexity of the venom and provide important knowledge for future work on identification and activity determination of venom components from this coral snake.


Assuntos
Cobras Corais , Venenos Elapídicos/química , Proteômica , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Venenos Elapídicos/enzimologia , Venenos Elapídicos/toxicidade , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Camundongos , Peptídeos
12.
Biochimie ; 147: 114-121, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29391193

RESUMO

The three-finger toxins (3FTxs) represent an extremely diverse protein family in elapid venoms, where the short chain α-neurotoxins are the most relevant toxin group from the clinical point of view. Essentially, the 3FTxs variability and the low proportions of α-neurotoxins in the venoms of North American coral snakes make it difficult to obtain effective elapid antivenoms against the envenomation symptoms caused mainly by these α-neurotoxins. In this work, thirty 3FTx transcript sequences were obtained from the venom glands of four coral snake species from Mexico (M. diastema, M. laticollaris, M. browni and M. tener). The transcripts were mined using a forward oligonucleotide based on the highly conserved signal peptide from the 3FTxs, and four of these transcripts, named MlatA1, B.D, B.E and D.H, encoded for short-chain α-neurotoxins. Additionally, one isoform of the D.H α-neurotoxin transcript was identified in the venom of M. diastema. The mature α-neurotoxin coded in the D.H transcript was heterologously expressed, and it was found soluble (4.2 mg/l) in the cytoplasm of a bacterial system. The recombinant D.H (rD.H) had an IC50 value of 31.5 ±â€¯4.4 nM on nicotinic acetylcholine receptors of the muscular type expressed in rhabdomyosarcoma cells (TE671). The rDH also had an LD50 of 0.15 mg/kg mice, and it was evaluated as a potential immunogen in New Zealand rabbits. The protective capacity of rabbit sera was tested against two native coral snake α-neurotoxins, and against rD.H. One of the anti-rD.H rabbit sera was able to neutralize the lethality of all three neurotoxins when tested in groups of CD1 mice. This work contributes to the increasing understanding of the high diversity of 3FTxs, and shows that recombinant coral snake α-neurotoxins are promising supplements for hyperimmunization protocols for coral snake antivenom production.


Assuntos
Cobras Corais/genética , Venenos Elapídicos/genética , Neurotoxinas/química , Neurotoxinas/genética , Análise de Sequência , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Clonagem Molecular , Expressão Gênica , Neurotoxinas/imunologia
13.
Toxicon ; 141: 79-87, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29196122

RESUMO

The scorpionism in Panama is notorious for the confluence and coexistence of buthid scorpions from the genera Centruroides and Tityus. This communication describes an overview of the larger representative toxic venom fractions from eight dangerous buthid scorpion species of Panama: Centruroides (C. granosus, C. bicolor, C. limbatus and C. panamensis) and Tityus (T. (A.) asthenes, T. (A.) festae, T. (T.) cerroazul and T. (A.) pachyurus). Their venoms were separated by HPLC and the corresponding sub-fractions were tested for lethality effects on mice and insects. Many fractions toxic to either mice or insects, or both, were found and have had their molecular masses determined by mass spectrometry analysis. The great majority of the lethal components had a molecular mass close to 7000 Da, assumed to be peptides that recognize Na+-channels, responsible for the toxicity symptoms observed in other buthids scorpion venoms. A toxic peptide isolated from the venom of T. pachyurus was sequenced by Edman degradation, allowing the synthesis of nucleotide probe for cloning the correspondent gene. The mature toxin based on the cDNA sequencing has the C-terminal residue amidated, contains 62 amino acid packed by 4 disulfide linkages, with molecular mass of 7099.1 Da. This same toxic peptide seems to be present in scorpions of the species T. pachyurus collected in 5 different regions of Panama, although the overall HPLC profile is quite different. The most diverse neurotoxic venom components from the genus Centruroides were found in the species C. panamensis, whereas T. cerroazul was the one from the genus Tityus. The most common neurotoxins were observed in the venoms of T. festae, T. asthenes and T. pachyurus with closely related molecular masses of 7099.1 and 7332 Da. The information reported here is considered very important for future generation of a neutralizing antivenom against scorpions from Panama. Furthermore, it will contribute to the growing interest in using bioactive toxins from scorpions for drug discovery purposes.


Assuntos
Venenos de Escorpião/química , Escorpiões/classificação , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Gryllidae , Espectrometria de Massas , Camundongos , Panamá , Peptídeos/química , Venenos de Escorpião/genética , Venenos de Escorpião/toxicidade , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/toxicidade , Especificidade da Espécie
14.
J. venom. anim. toxins incl. trop. dis ; 24: 17, 2018. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-954858

RESUMO

Centruroides hirsutipalpus, of the family Buthidae, is a scorpion endemic to the Western Pacific region of Mexico. Although medically important, its venom has not yet been studied. Therefore, this communication aims to identify their venom components and possible functions. Methods Fingerprinting mass analysis of the soluble venom from this scorpion was achieved by high-performance liquid chromatography and electrospray mass spectrometry. Furthermore, the soluble venom and its toxic effects were evaluated extensively via electrophysiological assays in HEK cells expressing human voltage-gated Na+ channels (hNav 1.1 to Nav1.6), CHO cells expressing hNav 1.7, potassium channel hERG 1 (Ether-à-go-go-related-gene) and the human K+-channel hKv1.1. Results The separation of soluble venom produced 60 fractions from which 83 distinct components were identified. The molecular mass distribution of these components varies from 340 to 21,120 Da. Most of the peptides have a molecular weight between 7001 and 8000 Da (46% components), a range that usually corresponds to peptides known to affect Na+ channels. Peptides with molecular masses from 3000 to 5000 Da (28% of the components) were identified within the range corresponding to K+-channel blocking toxins. Two peptides were obtained in pure format and completely sequenced: one with 29 amino acids, showing sequence similarity to an "orphan peptide" of C. limpidus, and the other with 65 amino acid residues shown to be an arthropod toxin (lethal to crustaceans and toxic to crickets). The electrophysiological results of the whole soluble venom show a beta type modification of the currents of channels Nav1.1, Nav1.2 and Nav1.6. The main effect observed in channels hERG and hKv 1.1 was a reduction of the currents. Conclusion The venom contains more than 83 distinct components, among which are peptides that affect the function of human Na+-channels and K+-channels. Two new complete amino acid sequences were determined: one an arthropod toxin, the other a peptide of unknown function.(AU)


Assuntos
Animais , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/toxicidade , Eletrofisiologia/métodos , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Proteínas de Artrópodes/fisiologia
15.
J. venom. anim. toxins incl. trop. dis ; 24: 1-8, 2018. graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484752

RESUMO

Background Centruroides hirsutipalpus, of the family Buthidae, is a scorpion endemic to the Western Pacific region of Mexico. Although medically important, its venom has not yet been studied. Therefore, this communication aims to identify their venom components and possible functions. Methods Fingerprinting mass analysis of the soluble venom from this scorpion was achieved by high-performance liquid chromatography and electrospray mass spectrometry. Furthermore, the soluble venom and its toxic effects were evaluated extensively via electrophysiological assays in HEK cells expressing human voltage-gated Na+ channels (hNav 1.1 to Nav1.6), CHO cells expressing hNav 1.7, potassium channel hERG 1 (Ether-à-go-go-related-gene) and the human K+-channel hKv1.1. Results The separation of soluble venom produced 60 fractions from which 83 distinct components were identified. The molecular mass distribution of these components varies from 340 to 21,120 Da. Most of the peptides have a molecular weight between 7001 and 8000 Da (46% components), a range that usually corresponds to peptides known to affect Na+ channels. Peptides with molecular masses from 3000 to 5000 Da (28% of the components) were identified within the range corresponding to K+-channel blocking toxins. Two peptides were obtained in pure format and completely sequenced: one with 29 amino acids, showing sequence similarity to an "orphan peptide" of C. limpidus, and the other with 65 amino acid residues shown to be an arthropod toxin (lethal to crustaceans and toxic to crickets). The electrophysiological results of the whole soluble venom show a beta type modification of the currents of channels Nav1.1, Nav1.2 and Nav1.6. The main effect observed in channels hERG and hKv 1.1 was a reduction of the currents. ..


Assuntos
Animais , Eletrofisiologia , Escorpiões , Impressões Digitais de DNA , Venenos de Escorpião/análise
16.
Artigo em Inglês | MEDLINE | ID: mdl-27617022

RESUMO

BACKGROUND: The cysteine-rich neurotoxins from elapid venoms are primarily responsible for human and animal envenomation; however, their low concentration in the venom may hamper the production of efficient elapid antivenoms. Therefore, the aim of the present study was to produce fully active elapid neurotoxic immunogens for elapid antivenom production. METHOD: Cysteine-rich neurotoxins showed recombinant expression in two strains of E. coli, and were purified using affinity chromatography and reverse-phase HPLC (rpHPLC). RESULTS: The cDNA of the four disulfide-bridged peptide neurotoxin Mlat1 was cloned into a modified expression vector, pQE30, which was transfected into two different E. coli strains. The recombinant toxin (HisrMlat1) was found only in inclusion bodies in M15 strain cells, and in both inclusion bodies and cytoplasm in Origami strain cells. The HisrMlat1 from inclusion bodies from M15 cells was solubilized using guanidine hydrochloride, and then purified by rpHPLC. It showed various contiguous fractions having the same molecular mass, indicating that HisrMlat1 was oxidized after cell extraction forming different misfolded disulfide bridge arrangements without biological activity. In vitro folding conditions of the misfolded HisrMlat1 generated a biologically active HisrMlat1. On the other hand, the HisrMlat1 from the cytoplasm from Origami cells was already soluble, and then purified by HPLC. It showed a single fraction with neurotoxic activity; so, no folding steps were needed. The in vitro folded HisrMlat1 from M15 cells and the cytoplasmic soluble HisrMlat1from Origami cells were indistinguishable in their structure and neurotoxicity. Rabbit polyclonal antibodies raised up against biologically active HisrMlat1 recognized the native Mlat1 (nMlat1) from the whole venom of M. laticorallis. In addition, HisrMlat1 was recognized by horse polyclonal antibodies obtained from the immunization of elapid species from sub-Saharan Africa. CONCLUSION: HisrMlat1 shows increased biological activities compared to the native peptide, and may be used as an immunizing agent in combination with other toxic components such phospholipases type A2 for elapid antivenom production.

17.
J Gen Physiol ; 147(5): 375-94, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27114612

RESUMO

Calcins are a novel family of scorpion peptides that bind with high affinity to ryanodine receptors (RyRs) and increase their activity by inducing subconductance states. Here, we provide a comprehensive analysis of the structure-function relationships of the eight calcins known to date, based on their primary sequence, three-dimensional modeling, and functional effects on skeletal RyRs (RyR1). Primary sequence alignment and evolutionary analysis show high similarity among all calcins (≥78.8% identity). Other common characteristics include an inhibitor cysteine knot (ICK) motif stabilized by three pairs of disulfide bridges and a dipole moment (DM) formed by positively charged residues clustering on one side of the molecule and neutral and negatively charged residues segregating on the opposite side. [(3)H]Ryanodine binding assays, used as an index of the open probability of RyRs, reveal that all eight calcins activate RyR1 dose-dependently with Kd values spanning approximately three orders of magnitude and in the following rank order: opicalcin1 > opicalcin2 > vejocalcin > hemicalcin > imperacalcin > hadrucalcin > maurocalcin >> urocalcin. All calcins significantly augment the bell-shaped [Ca(2+)]-[(3)H]ryanodine binding curve with variable effects on the affinity constants for Ca(2+) activation and inactivation. In single channel recordings, calcins induce the appearance of a subconductance state in RyR1 that has a unique fractional value (∼20% to ∼60% of the full conductance state) but bears no relationship to binding affinity, DM, or capacity to stimulate Ca(2+) release. Except for urocalcin, all calcins at 100 nM concentration stimulate Ca(2+) release and deplete Ca(2+) load from skeletal sarcoplasmic reticulum. The natural variation within the calcin family of peptides offers a diversified set of high-affinity ligands with the capacity to modulate RyRs with high dynamic range and potency.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Simulação de Acoplamento Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Venenos de Escorpião/farmacologia , Motivos de Aminoácidos , Animais , Sítios de Ligação , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/classificação , Ligação Proteica , Coelhos , Venenos de Escorpião/química , Venenos de Escorpião/classificação , Especificidade por Substrato
18.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954790

RESUMO

Background The cysteine-rich neurotoxins from elapid venoms are primarily responsible for human and animal envenomation; however, their low concentration in the venom may hamper the production of efficient elapid antivenoms. Therefore, the aim of the present study was to produce fully active elapid neurotoxic immunogens for elapid antivenom production. Method Cysteine-rich neurotoxins showed recombinant expression in two strains of E. coli, and were purified using affinity chromatography and reverse-phase HPLC (rpHPLC). Results The cDNA of the four disulfide-bridged peptide neurotoxin Mlat1 was cloned into a modified expression vector, pQE30, which was transfected into two different E. coli strains. The recombinant toxin (HisrMlat1) was found only in inclusion bodies in M15 strain cells, and in both inclusion bodies and cytoplasm in Origami strain cells. The HisrMlat1 from inclusion bodies from M15 cells was solubilized using guanidine hydrochloride, and then purified by rpHPLC. It showed various contiguous fractions having the same molecular mass, indicating that HisrMlat1 was oxidized after cell extraction forming different misfolded disulfide bridge arrangements without biological activity. In vitro folding conditions of the misfolded HisrMlat1 generated a biologically active HisrMlat1. On the other hand, the HisrMlat1 from the cytoplasm from Origami cells was already soluble, and then purified by HPLC. It showed a single fraction with neurotoxic activity; so, no folding steps were needed. The in vitro folded HisrMlat1 from M15 cells and the cytoplasmic soluble HisrMlat1from Origami cells were indistinguishable in their structure and neurotoxicity. Rabbit polyclonal antibodies raised up against biologically active HisrMlat1 recognized the native Mlat1 (nMlat1) from the whole venom of M. laticorallis. In addition, HisrMlat1 was recognized by horse polyclonal antibodies obtained from the immunization of elapid species from sub-Saharan Africa. Conclusion HisrMlat1 shows increased biological activities compared to the native peptide, and may be used as an immunizing agent in combination with other toxic components such phospholipases type A2 for elapid antivenom production.(AU)


Assuntos
Dobramento de Proteína , Elapidae , Venenos Elapídicos , Anticorpos , Neurotoxinas
19.
J. venom. anim. toxins incl. trop. dis ; 22: [1-8], 2016. ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484670

RESUMO

The cysteine-rich neurotoxins from elapid venoms are primarily responsible for human and animal envenomation; however, their low concentration in the venom may hamper the production of efficient elapid antivenoms. Therefore, the aim of the present study was to produce fully active elapid neurotoxic immunogens for elapid antivenom production. Method Cysteine-rich neurotoxins showed recombinant expression in two strains of E. coli, and were purified using affinity chromatography and reverse-phase HPLC (rpHPLC). Results The cDNA of the four disulfide-bridged peptide neurotoxin Mlat1 was cloned into a modified expression vector, pQE30, which was transfected into two different E. coli strains. The recombinant toxin (HisrMlat1) was found only in inclusion bodies in M15 strain cells, and in both inclusion bodies and cytoplasm in Origami strain cells. The HisrMlat1 from inclusion bodies from M15 cells was solubilized using guanidine hydrochloride, and then purified by rpHPLC. It showed various contiguous fractions having the same molecular mass, indicating that HisrMlat1 was oxidized after cell extraction forming different misfolded disulfide bridge arrangements without biological activity. In vitro folding conditions of the misfolded HisrMlat1 generated a biologically active HisrMlat1. On the other hand, the HisrMlat1 from the cytoplasm from Origami cells was already soluble, and then purified by HPLC. It showed a single fraction with neurotoxic activity; so, no folding steps were needed. The in vitro folded HisrMlat1 from M15 cells and the cytoplasmic soluble HisrMlat1from Origami cells were indistinguishable in their structure and neurotoxicity. Rabbit polyclonal antibodies raised up against biologically active HisrMlat1 recognized the native Mlat1 (nMlat1) from the whole venom of M. laticorallis. In addition, HisrMlat1 was recognized by horse polyclonal antibodies obtained from the immunization of elapid species from sub-Saharan Africa. Conclusion HisrMlat1 shows increased biological activities compared to the native peptide, and may be used as an immunizing agent in combination with other toxic components such phospholipases type A2 for elapid antivenom production.


Assuntos
Animais , Antivenenos/biossíntese , Neurotoxinas/classificação , Neurotoxinas/genética , Serpentes
20.
Peptides ; 53: 42-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24512947

RESUMO

A proteomic analysis of the venom obtained from the Cuban scorpion Rhopalurus garridoi was performed. Venom was obtained by electrical stimulation, separated by high performance liquid chromatography, and the molecular masses of their 50 protein components were identified by mass spectrometry. A peptide of 3940 Da molecular mass was obtained in pure form and its primary structure determined. It contains 37 amino acid residues, including three disulfide bridges. Electrophysiological experiments showed that this peptide is capable of blocking reversibly K(+)-channels hKv1.1 with a Kd close to 1 µM, but is not effective against hKv1.4, hERG1 and EAG currents, at the same concentration. This is the first protein component ever isolated from this species of scorpion and was assigned the systematic number α-KTx 2.14.


Assuntos
Peptídeos/química , Bloqueadores dos Canais de Potássio/química , Venenos de Escorpião/química , Escorpiões/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Eletrofisiologia , Espectrometria de Massas , Peptídeos/metabolismo , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacocinética , Canais de Potássio/efeitos dos fármacos , Proteômica , Venenos de Escorpião/metabolismo , Venenos de Escorpião/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA