Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(33): E7658-E7664, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29967169

RESUMO

We demonstrate that nucleic acid (NA) mononucleotide triphosphates (dNTPs and rNTPs), at sufficiently high concentration and low temperature in aqueous solution, can exhibit a phase transition in which chromonic columnar liquid crystal ordering spontaneously appears. Remarkably, this polymer-free state exhibits, in a self-assembly of NA monomers, the key structural elements of biological nucleic acids, including: long-ranged duplex stacking of base pairs, complementarity-dependent partitioning of molecules, and Watson-Crick selectivity, such that, among all solutions of adenosine, cytosine, guanine, and thymine NTPs and their binary mixtures, duplex columnar ordering is most stable in the A-T and C-G combinations.


Assuntos
Conformação de Ácido Nucleico , Ligação de Hidrogênio , Cristais Líquidos , Difração de Raios X
2.
Biophys J ; 110(10): 2151-61, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27224480

RESUMO

Platinum-containing molecules are widely used as anticancer drugs. These molecules exert cytotoxic effects by binding to DNA through various mechanisms. The binding between DNA and platinum-based drugs hinders the opening of DNA, and therefore, DNA duplication and transcription are severely hampered. Overall, impeding the above-mentioned important DNA mechanisms results in irreversible DNA damage and the induction of apoptosis. Several molecules, including multinuclear platinum compounds, belong to the family of platinum drugs, and there is a body of research devoted to developing more efficient and less toxic versions of these compounds. In this study, we combined different biophysical methods, including single-molecule assays (magnetic tweezers) and bulk experiments (ultraviolet absorption for thermal denaturation) to analyze the differential stability of double-stranded DNA in complex with either cisplatin or multinuclear platinum agents. Specifically, we analyzed how the binding of BBR3005 and BBR3464, two representative multinuclear platinum-based compounds, to DNA affects its stability as compared with cisplatin binding. Our results suggest that single-molecule approaches can provide insights into the drug-DNA interactions that underlie drug potency and provide information that is complementary to that generated from bulk analysis; thus, single-molecule approaches have the potential to facilitate the selection and design of optimized drug compounds. In particular, relevant differences in DNA stability at the single-molecule level are demonstrated by analyzing nanomechanically induced DNA denaturation. On the basis of the comparison between the single-molecule and bulk analyses, we suggest that transplatinated drugs are able to locally destabilize small portions of the DNA chain, whereas other regions are stabilized.


Assuntos
Antineoplásicos/farmacologia , DNA/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Algoritmos , Cisplatino/farmacologia , DNA/metabolismo , Congelamento , Estrutura Molecular , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Plasmídeos/genética , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA