Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891367

RESUMO

Fractal evolution is apparently effective in selectively preserving environmentally resilient traits for more than 80 million years in Streptotrichaceae (Bryophyta). An analysis simulated maximum destruction of ancestral traits in that large lineage. The constraints enforced were the preservation of newest ancestral traits, and all immediate descendant species obtained different new traits. Maximum character state changes in ancestral traits were 16 percent of all possible traits in any one sub-lineage, or 73 percent total of the entire lineage. Results showed, however, that only four ancestral traits were permanently eliminated in any one lineage or sub-lineage. A lineage maintains maximum biodiversity of temporally and regionally survival-effective traits at minimum expense to resilience across a geologic time of 88 million years for the group studied. Similar processes generating an extant punctuated equilibrium as bursts of about four descendants per genus and one genus per 1-2 epochs are possible in other living groups given similar emergent processes. The mechanism is considered complexity-related, the lineage being a self-organized emergent phenomenon strongly maintained in the ecosphere by natural selection on fractal genera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA