Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569346

RESUMO

Osteosarcoma (OS) is an aggressive tumor with a rare incidence. Extended surgical resections are the prevalent treatment for OS, which may cause critical-size bone defects. These bone defects lead to dysfunction, weakening the post-surgical quality of patients' life. Hence, an ideal therapeutic agent for OS should simultaneously possess anti-cancer and bone repair capacities. Curcumin (CUR) has been reported in OS therapy and bone regeneration. However, it is not clear how CUR suppresses OS development. Conventionally, CUR is considered a natural antioxidant in line with its capacity to promote the nuclear translocation of a nuclear transcription factor, nuclear factor erythroid 2 (NRF2). After nuclear translocation, NRF2 can activate the transcription of some antioxidases, thereby circumventing excess reactive oxygen species (ROS) that are deleterious to cells. Intriguingly, this research demonstrated that, in vitro, 10 and 20 µM CUR increased the intracellular ROS in MG-63 cells, damaged cells' DNA, and finally caused apoptosis of MG-63 cells, although increased NRF2 protein level and the expression of NRF2-regulated antioxidase genes were identified in those two groups.


Assuntos
Neoplasias Ósseas , Curcumina , Osteossarcoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Curcumina/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Osteossarcoma/tratamento farmacológico , Apoptose , Neoplasias Ósseas/tratamento farmacológico
2.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614201

RESUMO

Once prostate cancer cells metastasize to bone, they perceive approximately 2 kPa compression. We hypothesize that 2 kPa compression stimulates the epithelial-to-mesenchymal transition (EMT) of prostate cancer cells and alters their production of paracrine signals to affect osteoclast and osteoblast behavior. Human DU145 prostate cancer cells were subjected to 2 kPa compression for 2 days. Compression decreased expression of 2 epithelial genes, 5 out of 13 mesenchymal genes, and increased 2 mesenchymal genes by DU145 cells, as quantified by qPCR. Conditioned medium (CM) of DU145 cells was added to human monocytes that were stimulated to differentiate into osteoclasts for 21 days. CM from compressed DU145 cells decreased osteoclast resorptive activity by 38% but did not affect osteoclast size and number compared to CM from non-compressed cells. CM was also added to human adipose stromal cells, grown in osteogenic medium. CM of compressed DU145 cells increased bone nodule production (Alizarin Red) by osteoblasts from four out of six donors. Compression did not affect IL6 or TNF-α production by PC DU145 cells. Our data suggest that compression affects EMT-related gene expression in DU145 cells, and alters their production of paracrine signals to decrease osteoclast resorptive activity while increasing mineralization by osteoblasts is donor dependent. This observation gives further insight in the altered behavior of PC cells upon mechanical stimuli, which could provide novel leads for therapies, preventing bone metastases.


Assuntos
Reabsorção Óssea , Neoplasias da Próstata , Masculino , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Osso e Ossos/metabolismo , Reabsorção Óssea/metabolismo , Neoplasias da Próstata/metabolismo , Diferenciação Celular
3.
J Cancer Res Clin Oncol ; 149(8): 4173-4184, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36053327

RESUMO

OBJECTIVES: c-Met, a receptor tyrosine kinase, is involved in the growth, invasion and metastasis of a variety of cancers. In a set of cell lines from several solid tumors, a five-fold increase in c-Met expression after irradiation has been reported. This study aimed to assess if c-Met is likewise abundantly expressed in oral tongue squamous cell carcinoma (OTSCC) upon exposure to irradiation, followed by a Met-induced biological response. MATERIALS AND METHODS: Six OTSCC cell lines were exposed to gamma radiation doses of 2, 4, and 6 Gray. The changes in c-Met protein levels were assessed by western blot and flow cytometry. c-Met gene expression, cell migration, proliferation and cell cycle assays were performed as phenotypic readouts. RESULTS: Irradiation resulted in upregulation of c.Met in all cell lines with different time kinetics. On average the cells displayed minimal c-Met expression on their surface ranging from 5 to 30% of total protein. Abrupt downregulation of c-Met surface expression occurred one hour after radiation but recovered 48 h post-radiation. Intracellularly, the highest level of expression was found on day 5 after radiation exposure. Irradiation induced aggressive invasive potential of the cells as determined in cell migration assays, particularly in cell lines with the highest c-Met expression. CONCLUSIONS: These results provide novel insights into both intracellular and extracellular dynamics of c-Met expression profiles upon irradiation of OTSCC cells in vitro. It might also suggest that radiation enhances cell migration, indicative of invasiveness, through c-Met up-regulation, at least for certain types of OTSCC cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Neoplasias da Língua/genética , Neoplasias da Língua/radioterapia , Neoplasias da Língua/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética
4.
Front Bioeng Biotechnol ; 10: 917368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046674

RESUMO

Nowadays, radiotherapy is one of the most effective treatments for breast cancer. In order to overcome the radioresistance of cancer cells, radio-sensitizing agents can be used combined with irradiation to increase the therapeutic efficiency. Curcumin can enhance the radiosensitivity of cancer cells and decrease their viability by the accumulation of these cells in the G2 phase. The encapsulation of curcumin in a nanoniosomal delivery system increases aqueous solubility and bioavailability, resulting in increased radio sensitivity. The present study aimed to enhance the radio-sensitizing effect of the curcumin-containing nanoniosome (Cur-Nio) when combined with irradiation. Thus, curcumin (0.5 mg ml-1) was loaded on a PEGylated nanoniosome containing Tween 60, cholesterol, DOTAP, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) (at ratios of 70:30:10:5, respectively) by the thin-film hydration method. The particle size, zeta potential, entrapment efficiency, and drug-release rate of formulated nanoniosomes were determined. In order to assess cytotoxicity and apoptosis, different doses of irradiation along with various concentrations of free curcumin and Cur-Nio (single or in combination with irradiation) were treated with breast cancer cells. The particle size and zeta potential of Cur-Nio were reported to be 117.5 nm and -15.1 mV, respectively. The entrapment efficiency (EE%) and loading capacities were 72.3% and 6.68%, respectively. The drug-release rate during 6 h was 65.9%. Cell survival in the presence of curcumin at doses of 1 and 3 Gy showed a significant reduction compared with cells irradiated at 48 h and 72 h (p < 0.000). Also, the rate of cytotoxicity and apoptosis was significantly higher in cells treated with the combination of curcumin-containing nanoniosomes and irradiation in comparison with those treated with free curcumin. These findings indicate that the efficacy of pre-treatment with Cur-Nio as a radiosensitizer during radiotherapy enhances irradiation-induced breast cancer cell apoptosis and is a useful strategy to increase the effectiveness of breast cancer therapy.

5.
Cell J ; 24(7): 391-402, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36043407

RESUMO

OBJECTIVE: In this study, we aimed to develop new Lipo-niosomes based nanoparticles loaded with Amphotericin B (AmB) and Thymus Essential Oil (TEO) and test their effectiveness in the treatment of fungal-infected human adipose stem cells (hASCs). MATERIALS AND METHODS: In this experimental study, optimal formulation of AmB and TEO loaded lipo-niosome (based on lipid-surfactant thin-film hydration method) was chemically, and biologically characterized. Therefore, encapsulation capacity, drug release, size, and the survival rate of cells with different concentrations of free and encapsulated AmB/ TEO were evaluated using the MTT method, and its antifungal activity was compared with conventional AmB. RESULTS: Lipo-Niosome containing Tween 60 surfactant: cholesterol: Dipalmitoyl phosphatidylcholine (DPPC): Polyethylene glycol (PEG) with a ratio of 20:40:60:3 were chosen as optimal formulation. Lipo-Niosomes entrapment efficiency was 94.15%. The drug release rate after 24 hours was 52%, 54%, and 48% for Lipo-AmB, Lipo-TEO, and Lipo-AmB/TEO, respectively. Physical and chemical characteristics of the Lipo-Niosomes particles indicated size of 200 nm and a dispersion index of 0.32 with a Zeta potential of -24.56 mv. Furthermore, no chemical interaction between drugs and nano-carriers was observed. The cell viability of adipose mesenchymal stem cells exposed to 50 µg/ml of free AmB, free TEO, and free AmB/TEO was 13.4, 58, and 36.9%, respectively. Whereas the toxicity of the encapsulated formulas of these drugs was 48.9, 70.8, and 58.3% respectively. The toxicity of nanoparticles was very low (8.5%) at this concentration. Fluorescence microscopic images showed that the antifungal activity of Lipo-AmB/ TEO was significantly higher than free formulas of AmB, TEO, and AmB/TEO. CONCLUSION: In this study, we investigated the efficacy of the TEO/AmB combination, in both free and encapsulatedniosomal form, on the growth of fungal infected-hASCs. The results showed that the AmB/TEO-loaded Lipo-Niosomes can be suggested as a new efficient anti-fungal nano-system for patients treated with hASCs.

6.
Front Cell Dev Biol ; 9: 740783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869325

RESUMO

Osteosarcoma (OS), a primary malignant bone tumor, stems from bone marrow-derived mesenchymal stem cells (BMSCs) and/or committed osteoblast precursors. Distant metastases, in particular pulmonary and skeletal metastases, are common in patients with OS. Moreover, extensive resection of the primary tumor and bone metastases usually leads to bone defects in these patients. Bone morphogenic protein-2 (BMP-2) has been widely applied in bone regeneration with the rationale that BMP-2 promotes osteoblastic differentiation of BMSCs. Thus, BMP-2 might be useful after OS resection to repair bone defects. However, the potential tumorigenicity of BMP-2 remains a concern that has impeded the administration of BMP-2 in patients with OS and in populations susceptible to OS with severe bone deficiency (e.g., in patients with genetic mutation diseases and aberrant activities of bone metabolism). In fact, some studies have drawn the opposite conclusion about the effect of BMP-2 on OS progression. Given the roles of BMSCs in the origination of OS and osteogenesis, we hypothesized that the responses of BMSCs to BMP-2 in the tumor milieu may be responsible for OS development. This review focuses on the relationship among BMSCs, BMP-2, and OS cells; a better understanding of this relationship may elucidate the accurate mechanisms of actions of BMP-2 in osteosarcomagenesis and thereby pave the way for clinically safer and broader administration of BMP-2 in the future. For example, a low dosage of and a slow-release delivery strategy for BMP-2 are potential topics for exploration to treat OS.

7.
Comput Biol Med ; 124: 103826, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798924

RESUMO

Fluid flow dynamics and oxygen-concentration in 3D-printed scaffolds within perfusion bioreactors are sensitive to controllable bioreactor parameters such as inlet flow rate. Here we aimed to determine fluid flow dynamics, oxygen-concentration, and cell proliferation and distribution in 3D-printed scaffolds as a result of different inlet flow rates of perfusion bioreactors using experiments and finite element modeling. Pre-osteoblasts were treated with 1 h pulsating fluid flow with low (0.8 Pa; PFFlow) or high peak shear stress (6.5 Pa; PFFhigh), and nitric oxide (NO) production was measured to validate shear stress sensitivity. Computational analysis was performed to determine fluid flow between 3D-scaffold-strands at three inlet flow rates (0.02, 0.1, 0.5 ml/min) during 5 days. MC3T3-E1 pre-osteoblast proliferation, matrix production, and oxygen-consumption in response to fluid flow in 3D-printed scaffolds inside a perfusion bioreactor were experimentally assessed. PFFhigh more strongly stimulated NO production by pre-osteoblasts than PFFlow. 3D-simulation demonstrated that dependent on inlet flow rate, fluid velocity reached a maximum (50-1200 µm/s) between scaffold-strands, and fluid shear stress (0.5-4 mPa) and wall shear stress (0.5-20 mPa) on scaffold-strands surfaces. At all inlet flow rates, gauge fluid pressure and oxygen-concentration were similar. The simulated cell proliferation and distribution, and oxygen-concentration data were in good agreement with the experimental results. In conclusion, varying a perfusion bioreactor's inlet flow rate locally affects fluid velocity, fluid shear stress, and wall shear stress inside 3D-printed scaffolds, but not gauge fluid pressure, and oxygen-concentration, which seems crucial for optimized bone tissue engineering strategies using bioreactors, scaffolds, and cells.


Assuntos
Reatores Biológicos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Baías , Perfusão
8.
Mater Sci Eng C Mater Biol Appl ; 93: 790-799, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274113

RESUMO

OBJECTIVE: Bone tissue engineering (BTE) faces a major challenge with cell viability after implantation of a construct due to lack of functional vasculature within the implant. Human bone marrow derived mesenchymal stem cells (hBMSCs) have the potential to undergo transdifferentiation towards an endothelial cell phenotype, which may be appropriate for BTE in conjunction with the appropriate scaffolds and microenvironment. HYPOTHESIS AND METHODS: We hypothesized that slow delivery of vascular endothelial growth factor (VEGF) by using nanoparticles in combination with osteogenic stimuli might enhance both osteogenic and angiogenic differentiation of angiogenic primed hBMSCs cultured in an osteogenic microenvironment. Therefore, we developed a new strategy to enhance vascularization in BTE in vitro by synthesis of smart temperature sensitive poly(N­isopropylacrylamide) (PNIPAM) nanoparticles. We used PNIPAM nanoparticles loaded with collagen to investigate their ability to deliver VEGF for both angiogenic and osteogenic differentiation. RESULTS: We used the free radical polymerization technique to synthesize PNIPAM nanoparticles, which had particle sizes of approximately 100 nm at 37 °C and LCST of 30-32 °C. The cumulative VEGF release after 72 h for VEGF loaded PNIPAM (VEGF-PNIPAM) nanoparticles was 70%; for VEGF-PNIPAM loaded collagen hydrogels, it was 23%, which indicated slower release of VEGF in the VEGF-PNIPAM loaded collagen system. Immunocytochemistry (ICC) and inverted microscope visualization confirmed endothelial differentiation and capillary-like tube formation in the osteogenic culture medium after 14 days. Quantitative real-time polymerase chain reaction (QRT-PCR) also confirmed expressions of collagen type I (Col I), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) osteogenic markers along with expressions of platelet-endothelial cell adhesion molecule-1 (CD31), von Willebrand factor (vWF), and kinase insert domain receptor (KDR) angiogenic markers. Our data clearly showed that VEGF released from PNIPAM nanoparticles and VEGF-PNIPAM loaded collagen hydrogel could significantly contribute to the quality of engineered bone tissue.


Assuntos
Células da Medula Óssea/metabolismo , Portadores de Fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular , Células da Medula Óssea/citologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/farmacologia
9.
Int J Nanomedicine ; 13: 3853-3866, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013340

RESUMO

PURPOSE: Osteosarcoma (OS) mostly affects children and young adults, and has only a 20%-30% 5-year survival rate when metastasized. We aimed to create dual-targeted (extracellular against EphA2 and intracellular against JNK-interacting protein 1 [JIP1]), doxorubicin (DOX)-loaded liposomes to treat OS metastatic disease. MATERIALS AND METHODS: Cationic liposomes contained N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate (DOTAP), cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and distearoyl-phosphatidylethanolamine-methyl-poly(ethylene glycol) (DSPE-mPEG) conjugate. EphA2 targeting was accomplished by conjugating YSA peptide to DSPE-mPEG. Vesicles were subsequently loaded with DOX and JIP1 siRNA. RESULTS: Characteristics assessment showed that 1) size of the bilayered particles was 109 nm; 2) DOX loading efficiency was 87%; 3) siRNA could be successfully loaded at a liposome:siRNA ratio of >24:1; and 4) the zeta potential was 18.47 mV. Tumor-mimicking pH conditions exhibited 80% siRNA and 50.7% DOX sustained release from the particles. Stability studies ensured the protection of siRNA against degradation in serum. OS cell lines showed increased and more pericellular/nuclear localizations when using targeted vesicles. Nontargeted and targeted codelivery caused 70.5% and 78.6% cytotoxicity in OS cells, respectively (free DOX: 50%). Targeted codelivery resulted in 42% reduction in the siRNA target, JIP1 mRNA, and 46% decrease in JIP1 levels. CONCLUSION: Our dual-targeted, DOX-loaded liposomes enhance toxicity toward OS cells and may be effective for the treatment of metastatic OS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doxorrubicina/análogos & derivados , Resistência a Múltiplos Medicamentos , Nanopartículas/química , Osteossarcoma/tratamento farmacológico , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , RNA Interferente Pequeno/administração & dosagem , Receptor EphA2/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Cátions , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Osteossarcoma/genética , Osteossarcoma/patologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , RNA Interferente Pequeno/genética , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Artif Cells Nanomed Biotechnol ; 46(sup1): 684-692, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29475393

RESUMO

Cationic liposomes have been investigated as non-viral vectors for gene delivery for more than a decade to overcome challenges associated with viral gene delivery. However, due to instability of liposomes, siRNA delivery is still a serious problem. In this study, we developed stealth PEGylated liposome formulations and focused on the effects of PEGylated liposomes on parameters related to size, zeta potential, polydispersity index, siRNA-loading efficiency and long-term stability of the siRNA-liposome complex. We were able to generate siRNA lipoplexes that could be very efficiently loaded, did not aggregate, could be stored at 4 °C for at least 6 months with only marginal release (1-5%) of siRNA and enhanced intracellular delivery of siRNA. Moreover, we could demonstrate that PEGylation positively contributed to all these parameters compared to liposomes, which were not PEGylated. The prepared lipoplex was successfully silenced J1P1 expression in MG-63 osteosarcoma cell line. In conclusion, our novel PEGylated liposomes have high potential for systemic delivery of siRNA and can improve in vivo stability of free siRNA and also siRNA lipoplexes.


Assuntos
Lipossomos/química , Nanoestruturas/química , Polietilenoglicóis/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Humanos , Polietilenoglicóis/toxicidade , Transfecção
11.
Artif Cells Nanomed Biotechnol ; 46(1): 169-177, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28376641

RESUMO

This study focuses on the development of a universal mathematical model for drug release kinetics from liposomes to allow in silico prediction of optimal conditions for fine-tuned controlled drug release. As a prelude for combined siRNA-drug delivery, nanoliposome formulations were optimized using various mole percentages of a cationic lipid (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP) in the presence or absence of 3 mol% distearoyl phosphoethanolamine, polyethylene glycol (PEG-2000mDSPE). Outcome parameters were particle size, zeta potential, entrapment efficiency, in vitro drug release, and tumor cell kill efficiency. The optimized formula (containing 20% DOTAP with 3% DSPE-mPEG(2000) was found to be stable for six months, with round-shaped particles without aggregate formation, an average diameter of 71 nm, a suitable positive charge, and 89% drug encapsulation efficiency (EE). The 41% drug release during 6 h confirmed controlled release. Furthermore, the release profiles as functions of pH and temperature were investigated and the kinetics of the drug release could adequately be fitted to Korsmeyer-Peppas' model by multiple regression analysis. The statistical parameters confirmed good conformity of final models. Functionality of the novel cationic liposome formulations (± DOX) was tested on osteosarcoma (OS) cell lines. Increased OS cell toxicity (1.3-fold) was observed by the DOX-loaded vs. the free DOX. A feasibility pilot showed that siRNA could be loaded efficiently as well. In conclusion, we have established a predictive mathematical model for the fine-tuning of controlled drug release from liposomal formulations, while creating functional drug-delivery liposomes with potential for siRNA co-delivery to increase specificity and efficacy.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Lipossomos/química , Modelos Químicos , Nanoestruturas/química , Polietilenoglicóis/química , RNA Interferente Pequeno/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Composição de Medicamentos , Humanos , Cinética , RNA Interferente Pequeno/genética , Transfecção
12.
Pharm Res ; 34(12): 2891-2900, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29110283

RESUMO

PURPOSE: To employ Doxorubicin-loaded liposomes, modified with YSA-peptide to target EphA2, to reduce adverse effects against primary bone cells and maximize toxicity against Saos-2 osteosarcoma cells. METHODS: PEGylated liposomes were prepared by thin film method using Dipalmitoylphosphatidylcholine (DPPC), cholesterol and distearylphosphatidylethanolamine-polyethyleneglycol conjugate (DSPE-mPEG) in 67.9:29.1:3 M ratios, and loaded with DOX (L-DOX) by pH-gradient method. Targeted liposomes (YSA-L-DOX), were prepared by conjugating YSA-peptide to DSPE-mPEG. Liposomes were physicochemically characterized and tested in cellular toxicity assays. RESULTS: YSA conjugation efficiency was >98%. Size and polydispersity index of both L-DOX and YSA-L-DOX were around 88 nm and 0.188, respectively. Both had similar zeta potential, and 85% DOX loading efficiencies. DOX release kinetics followed the Korsmeyer-Peppa model, and showed comparable release for both formulations from 1-8 h, and a plateau of 29% after 48 h. Both formulations could be stably stored for ≥6 months at 4°C in the dark. Toxicity assays showed a significant 1.91-fold higher cytotoxicity compared to free DOX in the Saos-2 cells, and 2-fold lesser toxicity in primary bone cells compared to the Saos-2 cells. Cellular uptake studies showed higher and more nuclear uptake in YSA-L-DOX compared to L-DOX treated cells. CONCLUSIONS: YSA-L-DOX vesicles might be effective for targeted treatment of osteosarcoma.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos , Osteossarcoma/tratamento farmacológico , Receptor EphA2/metabolismo , Antibióticos Antineoplásicos/farmacologia , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Humanos , Lipossomos/química , Osteossarcoma/metabolismo , Peptídeos/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
13.
Cell J ; 19(Suppl 1): 55-65, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580308

RESUMO

OBJECTIVE: In this study we prepared a novel formulation of liposomal doxorubicin (L- DOX). The drug dose was optimized by analyses of cellular uptake and cell viability of osteosarcoma (OS) cell lines upon exposure to nanoliposomes that contained varying DOX concentrations. We intended to reduce the cytotoxicity of DOX and improve characteristics of the nanosystems. MATERIALS AND METHODS: In this experimental study, we prepared liposomes by the pH gradient hydration method. Various characterization tests that included dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo-TEM) imaging, and UV- Vis spectrophotometry were employed to evaluate the quality of the nanocarriers. In addition, the CyQUANT® assay and fluorescence microscope imaging were used on various OS cell lines (MG-63, U2-OS, SaOS-2, SaOS-LM7) and Human primary osteoblasts cells, as novel methods to determine cell viability and in vitro transfection efficacy. RESULTS: We observed an entrapment efficiency of 84% for DOX within the optimized liposomal formulation (L-DOX) that had a liposomal diameter of 96 nm. Less than 37% of DOX released after 48 hours and L-DOX could be stored stably for 14 days. L-DOX increased DOX toxicity by 1.8-4.6 times for the OS cell lines and only 1.3 times for Human primary osteoblasts cells compared to free DOX, which confirmed a higher sensitivity of the OS cell lines versus Human primary osteoblasts cells for L-DOX. We deduced that L- DOX passed more freely through the cell membrane compared to free DOX. CONCLUSION: We successfully synthesized a stealth L-DOX that contained natural phospholipid by the pH gradient method, which could encapsulate DOX with 84% efficiency. The resulting nanoparticles were round, with a suitable particle size, and stable for 14 days. These nanoparticles allowed for adequately controlled DOX release, increased cell permeability compared to free DOX, and increased tumor cell death. L-DOX provided a novel, more effective therapy for OS treatment.

14.
Chem Biol Drug Des ; 90(3): 368-379, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28120466

RESUMO

A novel approach was developed for the preparation of stealth controlled-release liposomal doxorubicin. Various liposomal formulations were prepared by employing both thin film and pH gradient hydration techniques. The optimum formulation contained phospholipid and cholesterol in 1:0.43 molar ratios in the presence of 3% DSPE-mPEG (2000). The liposomal formulation was evaluated by determining mean size of vesicle, encapsulation efficiency, polydispersity index, zeta potentials, carrier's functionalization, and surface morphology. The vesicle size, encapsulation efficiency, polydispersity index, and zeta potentials of purposed formula were 93.61 nm, 82.8%, 0.14, and -23, respectively. Vesicles were round-shaped and smooth-surfaced entities with sharp boundaries. In addition, two colorimetric methods for cytotoxicity assay were compared and the IC50 (the half maximal inhibitory concentration) of both methods for encapsulated doxorubicin was determined to be 0.1 µg/ml. The results of kinetic drug release were investigated at several different temperatures and pH levels, which showed that purposed formulation was thermo and pH sensitive.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Doxorrubicina/química , Doxorrubicina/farmacologia , Lipossomos/química , Nanoestruturas/química , Osteossarcoma/tratamento farmacológico , Temperatura , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/química , Doxorrubicina/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Tamanho da Partícula , Fosfolipídeos/química
15.
Neurourol Urodyn ; 36(3): 565-573, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26840206

RESUMO

OBJECTIVE: The use of knitted, polypropylene meshes for the surgical treatment of pelvic organ prolapse (POP) is frequently accompanied by severe complications. Looking for alternatives, we studied the potential of three different electrospun matrices in supporting the adhesion, proliferation, and matrix deposition of POP and non-POP fibroblasts, the most important cells to produce extracellular matrix (ECM), in vitro. STUDY DESIGN: We electrospun three commonly used medical materials: nylon; poly (lactide-co-glycolide) blended with poly-caprolactone (PLGA/PCL); and poly-caprolactone blended with gelatin (PCL/Gelatin). The matrices were characterized for their microstructure, hydrophilicity, and mechanical properties. We seeded POP and non-POP fibroblasts from patients with POP and we determined cellular responses and ECM deposition. RESULTS: All matrices had >65% porosity, homogenous microstructures, and close to sufficient tensile strength for pelvic floor repair: 15.4 ± 3.3 MPa for Nylon; 12.4 ± 1.6 MPa for PLGA/PCL; and 3.5 ± 0.9 MPa for PCL/Gelatin. Both the POP and non-POP cells adhered to the electrospun matrices; they proliferated well and produced ample ECM. Overall, the best in vitro performance appeared to be on nylon, presumably because this was the most hydrophilic material with the thinnest fibers. CONCLUSION: Electrospun nanofibrous matrices show feasible mechanical strength and great biocompatibility for POP and non-POP fibroblasts to produce their ECM in vitro and, thus, may be candidates for a new generation of implants for pelvic floor repair. Further studies on electrospun nanofibrous matrices should focus on mechanical and immunological conditions that would be presented in vivo. Neurourol. Urodynam. 36:565-573, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Nanofibras , Diafragma da Pelve/fisiopatologia , Prolapso de Órgão Pélvico/cirurgia , Telas Cirúrgicas , Engenharia Tecidual , Sobrevivência Celular , Matriz Extracelular , Estudos de Viabilidade , Feminino , Fibroblastos , Humanos , Prolapso de Órgão Pélvico/fisiopatologia
16.
Tissue Eng Part A ; 22(23-24): 1305-1316, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27676643

RESUMO

Electrospun matrices are proposed as an alternative for polypropylene meshes in reconstructive pelvic surgery. Here, we investigated the effect of fiber diameter on (1) the mechanical properties of electrospun poly (lactic-co-glycolic acid)-blended-poly(caprolactone) (PLGA/PCL) matrices; (2) cellular infiltration; and (3) the newly formed extracellular matrix (ECM) in vitro. We compared electrospun matrices with 1- and 8 µm fiber diameter and used nonporous PLGA/PCL films as controls. The 8-µm matrices were almost twice as stiff as the 1-µm matrices with 1.38 and 0.66 MPa, respectively. Matrices had the same ultimate tensile strength, but with 80% the 1-µm matrices were much more ductile than the 8-µm ones (18%). Cells infiltrated deeper into the matrices with larger pores, but cellular activity was comparable on both substrates. New ECM was deposited faster on the electrospun samples, but after 2 and 4 weeks the amount of collagen was comparable with that on nonporous films. The ECM deposited on the 1-µm matrices, and the nonporous film was about three times stiffer than the ECM found on the 8-µm matrices. Cell behavior in terms of myofibroblastic differentiation and remodeling was similar on the 1-µm matrices and nonporous films, in comparison to that on the 8-µm matrices. We conclude that electrospinning enhances the integration of host cells as compared with a nonporous film of the same material. The 1-µm matrices result in better mechanical behavior and qualitatively better matrix production than the 8-µm matrices, but with limited cellular infiltration. These data are useful for designing electrospun matrices for the pelvic floor.


Assuntos
Matriz Extracelular/química , Teste de Materiais , Diafragma da Pelve/cirurgia , Procedimentos de Cirurgia Plástica , Telas Cirúrgicas , Células Cultivadas , Feminino , Humanos , Ácido Láctico/química , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade
17.
Sci Rep ; 6: 22971, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26965792

RESUMO

Pelvic organ prolapse (POP) is characterised by the weakening of the pelvic floor support tissues, and often by subsequent prolapse of the bladder outside the body, i.e. cystocele. The bladder is kept in place by the anterior vaginal wall which consists of a dense extracellular matrix rich in collagen content that is maintained and remodelled by fibroblastic cells, i.e. fibroblasts and myofibroblasts. Since altered matrix production influences tissue quality, and myofibroblasts are involved in normal and pathological soft tissue repair processes, we evaluated matrix production of cells derived from pre- and post-menopausal POP and non-POP control anterior vaginal wall tissues. Results showed that cells from postmenopausal POP women deposited matrices with high percentage of collagen fibres with less anisotropic orientation and increased stiffness than those produced by controls. There was a transient increase in myofibroblastic phenotype that was lost after the peak of tissue remodelling. In conclusion, affected fibroblasts from postmenopausal prolapsed tissues produced altered matrices in vitro compared to controls. Such aberrant altered matrix production does not appear to be a consequence of abnormal phenotypical changes towards the myofibroblastic lineage.


Assuntos
Colágeno/metabolismo , Diafragma da Pelve/patologia , Prolapso de Órgão Pélvico/patologia , Vagina/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Pós-Menopausa/metabolismo , Pós-Menopausa/fisiologia , Vagina/metabolismo
18.
Eur J Oral Sci ; 123(1): 9-16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25557910

RESUMO

Formation of crystals in the enamel space releases protons that need to be buffered to sustain mineral accretion. We hypothesized that apical cystic fibrosis transmembrane conductance regulator (CFTR) in maturation ameloblasts transduces chloride into forming enamel as a critical step to secrete bicarbonates. We tested this by determining the calcium, chloride, and fluoride levels in developing enamel of Cftr-null mice by quantitative electron probe microanalysis. Maturation-stage enamel from Cftr-null mice contained less chloride and calcium than did wild-type enamel, was more acidic when stained with pH dyes ex vivo, and formed no fluorescent modulation bands after in vivo injection of the mice with calcein. To acidify the enamel further we exposed Cftr-null mice to fluoride in drinking water to stimulate proton release during formation of hypermineralized lines. In Cftr-deficient mice, fluoride further lowered enamel calcium without further reducing chloride levels. The data support the view that apical CFTR in maturation ameloblasts tranduces chloride into developing enamel as part of the machinery to buffer protons released during mineral accretion.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/metabolismo , Esmalte Dentário/química , Calcificação de Dente/fisiologia , Ameloblastos/metabolismo , Amelogênese/fisiologia , Animais , Bicarbonatos/análise , Soluções Tampão , Cálcio/análise , Cariostáticos/farmacologia , Cloretos/análise , Cloretos/metabolismo , Esmalte Dentário/efeitos dos fármacos , Microanálise por Sonda Eletrônica , Fluoresceínas , Corantes Fluorescentes , Fluoretos/análise , Fluoretos/sangue , Fluoretos/farmacologia , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Camundongos , Camundongos Endogâmicos CFTR , Microtomografia por Raio-X/métodos
19.
Mol Hum Reprod ; 20(11): 1135-43, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25189765

RESUMO

Pelvic organ prolapse (POP) remains a great therapeutic challenge with no optimal treatment available. Tissue maintenance and remodelling are performed by fibroblasts, therefore altered cellular functionality may influence tissue quality. In this study, we evaluated functional characteristics of fibroblastic cells from tissues involved in POP. To rule out normal ageing tissue degeneration, biopsies from 18 premenopausal women were collected from the precervical region (non-POP site) after hysterectomy of 8 healthy and 10 POP cystocele cases (POP-Q stage ≥ II). Extra tissues from the prolapsed sites were taken in the POP cases to distinguish between intrinsic and acquired cellular defects. Twenty-eight primary fibroblastic cultures were studied in vitro. A contractility assay was used to test fibroblast-mediated collagen contraction. Cellular mechanoresponses on collagen-coated or uncoated substrates were evaluated by measuring matrix remodelling factors at protein or gene expression levels. No differences were found between fibroblasts from the controls and the non-POP site of the case group. Fibroblastic cells from the prolapsed site showed delayed fibroblast-mediated collagen contraction and lower production of matrix metalloproteinase-2 (MMP-2) on collagen-coated plates. On uncoated surfaces the gene MMP-2 and its tissue inhibitor of metalloproteinases-2 were up-regulated in POP site fibroblastic cells. In conclusion, fibroblastic cells derived from prolapsed tissues of patients with cystocele, display altered in vitro functional characteristics depending on the surface substrate and compared with non-prolapsed site. This implies an acquired rather than an intrinsic defect for most patients with cystocele, and should be taken into account when trying to improve treatments for POP.


Assuntos
Prolapso de Órgão Pélvico/patologia , Pré-Menopausa , Vagina/patologia , Adulto , Fenômenos Biomecânicos , Proliferação de Células , Células Cultivadas , Colágeno/metabolismo , Colágeno/fisiologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Imuno-Histoquímica , Metaloproteinase 2 da Matriz , Prolapso de Órgão Pélvico/metabolismo , Vagina/metabolismo
20.
Int Urogynecol J ; 24(9): 1567-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23579290

RESUMO

INTRODUCTION AND HYPOTHESIS: Little is known about dynamic cell-matrix interactions in the context of pathophysiology and treatments for pelvic organ prolapse (POP). This study sought to identify differences between fibroblasts from women with varying degrees of prolapse in reaction to mechanical stimuli and matrix substrates in vitro. METHODS: Fibroblasts from the vaginal wall of three patients with POP Quantification (POP-Q) system stages 0, II, and IV were stretched on artificial polymer substrates either coated or not coated with collagen I. Changes in morphology and anabolic/catabolic compounds that affect matrix remodelling were evaluated at protein- and gene-expression levels. Statistical analysis was performed using one-way analysis of variance (ANOVA), followed by Tukey-Kramer's post hoc test. RESULTS: POP fibroblasts show delayed cell alignment and lower responses to extracellular matrix remodelling factors at both enzymatic- and gene-expression levels compared with healthy fibroblasts. CONCLUSION: POP fibroblasts, when compared with healthy cells, show differential mechanoresponses on two artificial polymer substrates. This should be taken into account when designing or improving implants for treating POP.


Assuntos
Fenômenos Biomecânicos/fisiologia , Junções Célula-Matriz/patologia , Fibroblastos/patologia , Prolapso de Órgão Pélvico/patologia , Polímeros , Índice de Gravidade de Doença , Biópsia , Junções Célula-Matriz/fisiologia , Células Cultivadas , Colágeno Tipo I/metabolismo , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Feminino , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Metaloproteinase 2 da Matriz/metabolismo , Prolapso de Órgão Pélvico/fisiopatologia , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Vagina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA