Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nat Chem ; 16(3): 380-388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38123842

RESUMO

Cysteine conjugation is an important tool in protein research and relies on fast, mild and chemoselective reactions. Cysteinyl thiols can either be modified with prefunctionalized electrophiles, or converted into electrophiles themselves for functionalization with selected nucleophiles in an independent step. Here we report a bioconjugation strategy that uses a vinyl thianthrenium salt to transform cysteine into a highly reactive electrophilic episulfonium intermediate in situ, to enable conjugation with a diverse set of bioorthogonal nucleophiles in a single step. The reactivity profile can connect several nucleophiles to biomolecules through a short and stable ethylene linker, ideal for introduction of infrared labels, post-translational modifications or NMR probes. In the absence of reactive exogenous nucleophiles, nucleophilic amino acids can react with the episulfonium intermediate for native peptide stapling and protein-protein ligation. Ready synthetic access to isotopologues of vinyl thianthrenium salts enables applications in quantitative proteomics. Such diverse applications demonstrate the utility of vinyl-thianthrenium-based bioconjugation as a fast, selective and broadly applicable tool for chemical biology.


Assuntos
Cisteína , Compostos de Sulfidrila , Cisteína/química , Compostos de Sulfidrila/química , Proteínas/química , Aminas/química , Proteômica
3.
Nat Commun ; 13(1): 1218, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260553

RESUMO

F-type ATP synthases are multiprotein complexes composed of two separate coupled motors (F1 and FO) generating adenosine triphosphate (ATP) as the universal major energy source in a variety of relevant biological processes in mitochondria, bacteria and chloroplasts. While the structure of many ATPases is solved today, the precise assembly pathway of F1FO-ATP synthases is still largely unclear. Here, we probe the assembly of the F1 complex from Acetobacterium woodii. Using laser induced liquid bead ion desorption (LILBID) mass spectrometry, we study the self-assembly of purified F1 subunits in different environments under non-denaturing conditions. We report assembly requirements and identify important assembly intermediates in vitro and in cellula. Our data provide evidence that nucleotide binding is crucial for in vitro F1 assembly, whereas ATP hydrolysis appears to be less critical. We correlate our results with activity measurements and propose a model for the assembly pathway of a functional F1 complex.


Assuntos
Trifosfato de Adenosina , ATPases Mitocondriais Próton-Translocadoras , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Translocadoras de Prótons/metabolismo
4.
Phys Chem Chem Phys ; 22(40): 22963-22972, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33029608

RESUMO

Incorporation of minimally perturbative vibrational probes into proteins allows combination of the femtosecond time resolution of two dimensional infrared (2D-IR) spectroscopy with a spatial resolution on the level of single side chains. Here, we apply the thiocyanate (-SCN) label introduced by the cyanylation of cysteine to probe local dynamics in the photo-switchable protein PYP. We incorporated the -SCN label into five positions of the protein structure including PYP's core region, its solvent exposed surface and the chromophore-binding pocket. The analysis of -SCN's time dependent 2D-IR lineshape provides insight into the timescales and amplitudes of the dynamics in the label's protein and solvent microenvironment. We present a detailed analysis of the local protein dynamics found at all five labelling positions in PYP's dark state (pG). Absorption of a blue photon triggers the isomerisation of PYP's chromophore and eventually leads to an overall reorganisation of the protein structure, where PYP ends up in a less structured signalling state pB. Employing 2D-IR spectroscopy also on the signalling state allows assessment of the change of local dynamics compared to the pG state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA